Skip to main content

Roles of Oxidative Stress in Xeroderma Pigmentosum

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 637))

Abstract

Tissue damage caused by oxidative stress has been implicated in aging, carcinogenesis, atherosclerosis and neurodegeneration. In xeroderma pigmentosum (XP) and Cockayne syndrome (CS), oxidative stress is associated with promoted occurrence of skin cancers and progressive neurodegeneration, because decreased DNA repair and persistent DNA damage can result in augmented oxidative nucleotide damage. Oxidative nucleotide damage has been investigated mainly in isolated human skin and blood cells or their cell lines, in which CS cells may be more sensitive to oxidative DNA lesions than XP cells. However, cells from patients with XP group A (XPA) show defective repair of 8,5′-(S)-cyclo-2′-deoxyadenosine, a free radical-induced endogenous DNA lesion and antioxidant system seems to be disturbed variously in cells from XP patients. We have neuropathologically investigated the involvement of oxidative stress in the brains of XPA and CS autopsy cases and clarified the enhanced lipid peroxidation and protein glycation in the pallidal and cerebellar degeneration. Also, oxidative nucleotide damage with reduced expression of superoxide dismutases has been identified in the basal ganglia lesions, lending further weight involvement of oxidative stress in neurodegeneration in XPA patients. Additionally, we are developing ELISA analysis of oxidative stress markers in the urine and cerebrospinal fluid from XP patients, which will aid with further data on oxidative stress in pathogenesis of XP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Halliwell B. Oxidative stress and neurodegeneration: where are we know? J Neurochem 2006; 97(6):1634–1658.

    Article  PubMed  CAS  Google Scholar 

  2. Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995; 64:97–112.

    Article  PubMed  CAS  Google Scholar 

  3. Dalle-Donne I, Rossi R, Colombo R et al. Biomarkers of oxidative damage in human disease. Clin Chem 2006; 52(4):601–623.

    Article  PubMed  CAS  Google Scholar 

  4. Toyokuni S. Reactive oxygen species-induced molecular damage and its application in pathology. Pathol Int 1999; 49(2):91–102.

    Article  PubMed  CAS  Google Scholar 

  5. Toyokuni S, Tanaka T, Hattori Y et al. Quantitative immunohistochemical determination of 8-hydroxy-2′-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilotriacetate-indeuced renal carcinogenesis model. Lab Invest 1997; 76(3):365–374.

    PubMed  CAS  Google Scholar 

  6. Viassara H, Bucala R, Striker L. Pathogenic effects of advanced glycosylation: biochemical, biologic and clinical implications for diabetes and aging. Lab Invest 1994; 70(2):138–151.

    Google Scholar 

  7. Laposa RR, Cleaver JE. DNA repair on the brain. Proc Natl Acad Sci USA 2001; 98(23):12860–12862.

    Article  PubMed  CAS  Google Scholar 

  8. Nishigori C, Hattori Y, Toyokuni S. Role of reactive species in skin carcinogenesis. Antioxid Redox Signal 2004; 6(3):561–570.

    Article  PubMed  CAS  Google Scholar 

  9. Reardon JT, Bessho T, Kung HC et al. In vitro repair of oxidative DNA damage by human nuclotide excision repair system: possible explanation for neurodegeneration in xeroderma pigmentosum patients. Proc Natl Acad Sci USA 1997; 94(17):9463–9468.

    Article  PubMed  CAS  Google Scholar 

  10. Le Page F, Kwoh EE, Avrutskaya A et al. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH and CSB and implication for Cockayne syndrome. Cell 2000; 101(2):159–171.

    Article  PubMed  Google Scholar 

  11. Balajee AS, Dianova I, Bohr VA. Oxidative damage-induced PCNA complex formation is efficient in xeroderma pigmentosum group A but reduced in Cockayne syndrome group B-cells. Nucleic Acids Res 1999; 27(22):4476–4482.

    Article  PubMed  CAS  Google Scholar 

  12. Tuo J, Jaruga P, Rodrigue H et al. Primary fibroblast of Cockayne syndrome patients are defective in cellular repair of 8-hydroxyguanine and 8-hydroxyadenine resulting from oxidative stress. FASEB J 2003; 17(6):668–674.

    Article  PubMed  CAS  Google Scholar 

  13. Arbault S, Sojic N, Bruce D et al. Oxidative stress in cancer prone xeroderma pigmentosum fibroblasts. Real-time and single monitoring of superoxide and nitric oxide production with microelectrodes. Carcinogenesis 2004; 25(4):509–515.

    Article  PubMed  CAS  Google Scholar 

  14. Brooks PJ, Wise DS, Berry DA et al. The oxidative DNA lesion 8, 5′-(S)-cyclo-2′-deoxyadenosine is repaired by the nucleotide excision repair pathway and blocks gene expression in mammalian cells. J Biol Chem 2000; 275(29):22355–22362.

    Article  PubMed  CAS  Google Scholar 

  15. de Waard H, de Wit J, Gorgels TG et al. Cell type-specific hypersensitivity to oxidative damage in CSB and XPA mice. DNA repair 2003; 2(1):13–25.

    Article  PubMed  Google Scholar 

  16. Schallreuter KU, Pittelkow MR, Wood JM. Defects in antioxidant defense and calcium transport in the epidermis of xeroderma pigmentosum patients. Arch Dermatol Res 1991; 283(7):449–455.

    Article  PubMed  CAS  Google Scholar 

  17. Vuillaume M, Daya-Grosjean L, Vincens P et al. Striking differences in cellular catalase activity between two DNA repair-deficient diseases: xeroderma pigmentosum and trichothiodystrophy. Carcinogenesis 1992; 13(3):321–328.

    Article  PubMed  CAS  Google Scholar 

  18. Hoffschir F, Daya-Grosjean L, Petit PX et al. Low catalase activity in xeroderma pigmentosum fibroblasts and SV40-transformed human cell lines is directly related to decreased intracellular levels of the cofactor, NADPH. Free Radic Biol Med 1998; 24(5):809–816.

    Article  PubMed  CAS  Google Scholar 

  19. Zecca l, Youdim MB, Riederer P et al. Iron, brain ageing and neurodegenerative disorders. Nat Review Neurosci 2004; 5(11):863–873.

    Article  CAS  Google Scholar 

  20. Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 1996;36:83–116.

    Article  PubMed  CAS  Google Scholar 

  21. Nunomura A, Castellani RJ, Zhu X et al. Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol 2006; 65(7):631–641.

    Article  PubMed  CAS  Google Scholar 

  22. Jenner P. Oxidative stress in Parkinsons disease. Ann Neurol 2003; 53(suppl 3):S26–S38.

    Article  PubMed  CAS  Google Scholar 

  23. Liu J, Lillo C, Jonsson PA et al. Toxicity of familial ALS-linked SOD1 mutants from selective recruitment of spinal mitochondria. Neuron 2004; 43(1):5–17.

    Article  PubMed  CAS  Google Scholar 

  24. Nunomura A, Perry G, Pappolla MA et al. Neuronal oxidative stress precedes amyloid-β deposition in Down syndrome. J Neuropathol Exp Neurol 2000; 59(11):1011–1017.

    PubMed  CAS  Google Scholar 

  25. Haynes RL, Baud O, Li J et al. Oxidative and nitrative injury in periventricular leukomalacia: a review. Brain Pathol 2005; 15(3):225–233.

    Article  PubMed  CAS  Google Scholar 

  26. Hayashi M, Arai N, Satoh J et al. Neurodegenerative mechanisms in subacute sclerosing panencephalitis. J Child Neurol 2002; 17(10):725–730.

    Article  PubMed  Google Scholar 

  27. Hayashi M, Araki S, Arai N et al. Oxidative stress and disturbed glutamate transport in spinal muscular atrophy. Brain Dev 2002; 24(8):770–775.

    Article  PubMed  Google Scholar 

  28. Araki S, Hayashi M, Tamagawa K et al. Neuropathological analysis in spinal muscular atrophy type II. Acta Neuropathol 2003; 106(5):441–448.

    Article  PubMed  CAS  Google Scholar 

  29. Hachiya Y, Hayashi M, Kumada S et al. Mechanisms of neurodegeneration in neuronal ceroid-lipofuscinosis. Acta Neuropathol 2006; 111(2):168–177.

    Article  PubMed  CAS  Google Scholar 

  30. Anzai Y, Hayashi M, Fueki N et al. Protracted juvenile neuronal ceroid lipofuscinosis—an autopsy report and immunohistochemical analysis. Brain Dev 2006; 28(7):462–465.

    Article  PubMed  Google Scholar 

  31. Bootsma D, Kraemer KH, Cleaver JE et al. Nucleotide excision repair syndromes: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. In: Scriber CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic and molecular bases of inherited disease, 8th ed. Vol. I, New York: McGraw-Hill, Inc., 2001:677–703.

    Google Scholar 

  32. Itoh M, Hayashi M, Shioda K et al. Neurodegeneration in hereditary nucleotide repair disorders. Brain Dev 1999; 21(5):326–333.

    Article  PubMed  CAS  Google Scholar 

  33. Kohji T, Hayashi M, Shioda K et al. Cerebellar neurodegeneration in human hereditary DNA repair disorders. Neurosci Lett 1998; 243(1–3):133–136.

    Article  PubMed  CAS  Google Scholar 

  34. Hayashi M, Itoh M, Araki S et al. Oxidative stress and glutamate transport in hereditary nucleotide repair disorders. J Neuropathol Exp Neurol 2001; 60(4):350–356.

    PubMed  CAS  Google Scholar 

  35. Hayashi M, Araki S, Kohyama J et al. Oxidative nucleotide damage and superoxide dismutase expression in the brains of xeroderma pigmentosum group A and Cockayne syndrome. Brain Dev 2005; 27(1):34–38.

    Article  PubMed  Google Scholar 

  36. Hayashi M, Araki S, Kohyama J et al. Brainstem and basal ganglia lesions in xeroderma pigmentosum group A. J Neuropathol Exp Neurol 2004; 63(10):1048–1057.

    PubMed  Google Scholar 

  37. Matsubasa T, Uchino T, Karashima S et al. Oxidative stress in very low birth weight infants as measured by urinary 8-OHdG. Free Radic Res 2002; 36(2):189–193.

    Article  PubMed  CAS  Google Scholar 

  38. Tsukahara H, Haruta T, Ono N et al. Oxidative stress in childhood meningitis: measurement of 8-hydroxy-2′-deoxyguanosine concentration in cerebrospinal fluid. Redox Rep 2000; 5(5):295–298.

    Article  PubMed  CAS  Google Scholar 

  39. Tsukahara H, Haruta T, Todoroki Y et al. Oxidant and antioxidant activities in childhood meningitis. Life Sci 2002; 71(23):2797–2806.

    Article  PubMed  CAS  Google Scholar 

  40. Schulpis KH, Lazaropoulou C, Regoutas S et al. Valproic acid monotherapy induces DNA oxidative damage. Toxicology 2006; 217(2–3):228–232.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Hayashi, M. (2008). Roles of Oxidative Stress in Xeroderma Pigmentosum. In: Ahmad, S.I., Hanaoka, F. (eds) Molecular Mechanisms of Xeroderma Pigmentosum. Advances in Experimental Medicine and Biology, vol 637. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09599-8_13

Download citation

Publish with us

Policies and ethics