Skip to main content

Role of Mammalian Coronin 7 in the Biosynthetic Pathway

  • Chapter
Book cover The Coronin Family of Proteins

Part of the book series: Subcellular Biochemistry ((SCBI,volume 48))

Abstract

Most coronin proteins rely on interaction with actin in their functions. Mammalian coronin 7 has not been shown to interact with actin, but rather to bind to the outer side of Golgi complex membranes. Targeting of coronin 7 to Golgi membranes requires the activity of Src kinase and integrity of AP-1 adaptor protein complex. Coronin 7 further physically interacts with both AP-1 and Src in vivo and in vitro and is phosphorylated by Src. Depletion of coronin 7 by RNAi results in Golgi breakdown and accumulation of arrested cargo proteins, suggesting the protein functions in the later stages of cargo sorting and export from the Golgi complex. We suggest that coronin 7 acts as a mediator of cargo vesicle formation at the trans-Golgi network (TGN) downstream of AP-1 interaction with cargo but upstream of protein kinase D dependent membrane fission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rybakin V, Clemen CS. Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. Bioessays 2005; 27(6):625–632.

    Article  PubMed  CAS  Google Scholar 

  2. Uetrecht AC, Bear JE. Coronins: the return of the crown. Trends Cell Biol 2006; 16(8):421–426.

    Article  PubMed  CAS  Google Scholar 

  3. Liu CZ, Chen Y, Sui SF. The identification of a new actin-binding region in p57. Cell Res 2006; 16(1):106–112.

    Article  PubMed  CAS  Google Scholar 

  4. Oku T, Itoh S, Okano M et al. Two regions responsible for the actin binding of p57, a mammalian coronin family actin-binding protein. Biol Pharm Bull 2003; 26(4):409–416.

    Article  PubMed  Google Scholar 

  5. Spoerl Z, Stumpf M, Noegel AA et al. Oligomerization, F-actin interaction and membrane association of the ubiquitous mammalian coronin 3 are mediated by its carboxyl terminus. J Biol Chem 2002; 277(50):48858–48867.

    Article  PubMed  CAS  Google Scholar 

  6. Appleton BA, Wu P, Wiesmann C. The crystal structure of murine coronin-1: a regulator of actin cytoskeletal dynamics in lymphocytes. Structure 2006; 14(1):87–96.

    Article  PubMed  CAS  Google Scholar 

  7. Wong YH, Lee TY, Liang HK et al. KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res 2007; 35(Web Server issue): W588–594.

    Article  PubMed  Google Scholar 

  8. Huang HD, Lee TY, Tzeng SW et al. KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res 2005; 33(Web Server issue):W226–229.

    Article  PubMed  CAS  Google Scholar 

  9. Blom N, Sicheritz-Ponten T, Gupta R et al. Prediction of posttranslational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 2004; 4(6):1633–1649.

    Article  PubMed  CAS  Google Scholar 

  10. Rybakin V, Stumpf M, Schulze A et al. Coronin 7, the mammalian POD-1 homologue, localizes to the Golgi apparatus. FEBS Lett 2004; 573(1–3):161–167.

    Article  PubMed  CAS  Google Scholar 

  11. Rybakin V, Gounko NV, Spate K et al. Crn 7 interacts with AP-1 and is required for the maintenance of Golgi morphology and protein export from the Golgi. J Biol Chem 2006; 281(41):31070–31078.

    Article  PubMed  CAS  Google Scholar 

  12. Trucco A, Polishchuk RS, Martella O et al. Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 2004; 6(11):1071–1081.

    Article  PubMed  CAS  Google Scholar 

  13. D’Souza MP, August JT. A kinetic analysis of biosynthesis and localization of a lysosome-associated membrane glycoprotein. Arch Biochem Biophys 1986; 249(2):522–532.

    Article  PubMed  Google Scholar 

  14. Guarnieri FG, Arterburn LM, Penno MB et al. The motif Tyr-X-X-hydrophobic residue mediates lysosomal membrane targeting of lysosome-associated membrane protein I. J Biol Chem 1993; 268(3):1941–1946.

    PubMed  CAS  Google Scholar 

  15. Shestakova A, Zolov S, Lupashin V. COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic 2006; 7(2):191–204.

    Article  PubMed  CAS  Google Scholar 

  16. Robinson MS. Adaptable adaptors for coated vesicles. Trends Cell Biol 2004; 14(4):167–174.

    Article  PubMed  CAS  Google Scholar 

  17. Liljedahl M, Maeda Y, Colanzi A et al. Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell 2001; 104(3):409–420.

    Article  PubMed  CAS  Google Scholar 

  18. Yeaman C, Ayala MI, Wright JR et al. Protein kinase D regulates basolateral membrane protein exit from trans-Golgi network. Nat Cell Biol 2004; 6(2):106–112.

    Article  PubMed  CAS  Google Scholar 

  19. Simmen T, Honing S, Icking A et al. AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nat Cell Biol 2002; 4(2):154–159.

    Article  PubMed  CAS  Google Scholar 

  20. Ang AL, Taguchi T, Francis S et al. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J Cell Biol 2004; 167(3):531–543.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily Rybakin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Rybakin, V. (2008). Role of Mammalian Coronin 7 in the Biosynthetic Pathway. In: Clemen, C.S., Eichinger, L., Rybakin, V. (eds) The Coronin Family of Proteins. Subcellular Biochemistry, vol 48. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09595-0_10

Download citation

Publish with us

Policies and ethics