Skip to main content

Retroviruses and Insights into Cancer: Retroviral Regulatory/Accessory Genes and Cancer

  • Chapter
  • First Online:
Retroviruses and Insights into Cancer
  • 629 Accesses

Abstract

The distinguishing feature that separates simple and complex retroviruses is that in addition to the structural and enzymatic gene products, complex retroviruses have regulatory and accessory genes that encode for proteins that perform a multitude of functions. Extensive research has been performed to elucidate the functional role that these gene products play in the viral-life cycle and their potential contribution to pathogenesis. This chapter focuses on the biological properties of regulatory and/or accessory genes from two very distinct human retroviruses: human T-cell leukemia virus type 1 (HTLV-1) and human endogenous retrovirus (HERV)-K. HTLV-1 infection is associated with leukemia/lymphoma and a variety of immune-mediated disorders. We will discuss the HTLV-1 Tax oncoprotein and the novel minus strand-encoded leucine zipper-gene product, HBZ, with emphasis on their contribution to deregulation of transcription, cellular signal-transduction pathways, and cellular checkpoints. The expression of these gene products may create an environment favorable for cellular transformation and the development and maintenance of a virus-induced disease. HERVs have been implicated in the etiology of multiple types of diseases, such as autoimmune diseases, neurological disorders, and several forms of cancer. The remaining part of the chapter will focus on Rec (formally known as cORF) and the Np9 ­regulatory proteins of HERV-K, as well as the association of these proteins with cancer development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akagi, T., Ono, H., and Shimotohno, K. 1996. Expression of cell-cycle regulatory genes in HTLV-I infected T-cell lines: Possible involvement of Tax1 in the altered expression of cyclin D2, p18Ink4, and p21Waf1/Cip1/Sdi1. Oncogene 12:1645–1652.

    PubMed  CAS  Google Scholar 

  • Ariumi, Y., Kaida, A., Lin, J. Y., et.al. 2000. HTLV-1 tax oncoprotein represses the p53-mediated trans-activation function through coactivator CBP sequestration. Oncogene 19:1491–1499.

    PubMed  CAS  Google Scholar 

  • Armbruester, V., Sauter, M., Krautkraemer, E., et al. 2002. A novel gene from the human endogenous retrovirus K expressed in transformed cells. Clin. Cancer. Res. 8:1800–1807.

    PubMed  CAS  Google Scholar 

  • Armbruester, V., Sauter, M., Roemer, K., et al. 2004. Np9 protein of human endogenous retrovirus K interacts with ligand of numb protein X. J. Virol. 78:10310–10319.

    PubMed  CAS  Google Scholar 

  • Arnold, J., Yamamoto, B., Li, M., et al. 2006. Enhancement of infectivity and persistence in vivo by HBZ, a natural antisense coded protein of HTLV-1. Blood 107:3976–3982.

    PubMed  CAS  Google Scholar 

  • Bangham, C, R., andand Osame, M. 2005. Cellular immune response to HTLV-1 Oncogene 24:6035–6046.

    CAS  Google Scholar 

  • Bannert, N., and Kurth, R. 2004. Retroelements and the human genome: new perspectives on an old relation. Proc. Natl. Acad. Sci. U S A. 101 Suppl. 2:14572–14579.

    Google Scholar 

  • Bellon, M., Datta, A., Brown, M., et al. 2006. Increased expression of telomere length regulating factors TRF1, TRF2 and TIN2 in patients with adult T-cell leukemia Int. J. Cancer 119:2090–2097.

    CAS  Google Scholar 

  • Benhamou, S., and Sarasin, A. 2000. Variability in nucleotide excision repair and cancer risk: A review. Mutat. Res. 462:149–158.

    PubMed  CAS  Google Scholar 

  • Beverly, L. J., and Capobianco, A. J. 2003. Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in Notch(IC)-induced T cell leukemogenesis. Cancer Cell 3:551–564.

    PubMed  CAS  Google Scholar 

  • Boese, A., Sauter, M., Galli, U., et al. 2000. Human endogenous retrovirus protein cORF supports cell transformation and associates with the promyelocytic leukemia zinc finger protein. Oncogene 19:4328–4336.

    PubMed  CAS  Google Scholar 

  • Briquet, S., Richardson, J., Vanhee-Brossollet, C., et al. 2001. Natural antisense transcripts are detected in different cell lines and tissues of cats infected with feline immunodeficiency virus. Gene. 267:157–164.

    PubMed  CAS  Google Scholar 

  • Cahill, D. P., Lengauer, C., Yu, J., et al. 1998. Mutations of mitotic checkpoint genes in human cancers. Nature 392:300–303.

    PubMed  CAS  Google Scholar 

  • Callahan, R., and Raafat, A. 2001. Notch signaling in mammary gland tumorigenesis. J. Mammary Gland Biol. Neoplasia 6:23–36.

    PubMed  CAS  Google Scholar 

  • Cavanagh, M.-H., Landry, S., Audet, B., et al. 2006. HTLV-I antisense transcripts initiating in the 3’ LTR are alternatively spliced and polyadenylated. Retrovirology 3:15.

    PubMed  Google Scholar 

  • Ching, Y. P., Chan, S. F., Jeang, K. T., et al. 2006. The retroviral oncoprotein Tax targets the coiled-coil centrosomal protein TAX1BP2 to induce centrosome overduplication. Nat. Cell Biol. 8:717–724.

    PubMed  CAS  Google Scholar 

  • Deininger, P. L., and Batzer, M. A. 2002. Mammalian retroelements. Genome Res. 12:1455–1465.

    PubMed  CAS  Google Scholar 

  • Denne, M., Sauter, M., Armbruester, V., et al. 2007. Physical and functional interactions of human endogenous retrovirus proteins Np9 and rec with the promyelocytic leukemia zinc finger protein. J. Virol. 81:5607–5616.

    PubMed  CAS  Google Scholar 

  • Derse, D., Mikovits, J., and Ruscetti, F. 1997. X-I and X-II open reading frames of HTLV-I are not required for virus replication or for immortalization of primary T-cells in vitro. Virology 237:123–128.

    PubMed  CAS  Google Scholar 

  • Duensing, S., and Munger, K. 2003. Centrosome abnormalities and genomic instability induced by human papillomavirus oncoproteins. Prog. Cell Cycle Res. 5:383–391.

    PubMed  Google Scholar 

  • Duensing, S., and Munger, K. 2004. Mechanisms of genomic instability in human cancer: Insights from studies with human papillomavirus oncoproteins Int. J. Cancer 109:157–162.

    CAS  Google Scholar 

  • Endo, K., Hirata, A., Iwai, K., et al. 2002. Human T-cell leukemia virus type 2 (HTLV-2) Tax protein transforms a rat fibroblast cell line but less efficiently than HTLV-1 Tax. J. Virol. 76:2648–2653.

    PubMed  CAS  Google Scholar 

  • Feuer, G., and Green, P. L. 2005. Comparative biology of human T-cell lynphotropic virus type 1 (HTLV-1) and HTLV-2. Oncogene 24:5996–6004.

    PubMed  CAS  Google Scholar 

  • Flint, J., Craddock, C. F., Villegas, A., et al. 1994. Healing of broken human chromosomes by the addition of telomeric repeats. Am. J. Hum. Genet. 55:505–512.

    PubMed  CAS  Google Scholar 

  • Forgues, M., Difilippantonio, M. J., Linke, S. P., et al. 2003. Involvement of Crm1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol. Cell. Biol. 23:5282–5292.

    PubMed  CAS  Google Scholar 

  • Fraedrich, K., Muller, B., and Grassmann, R. 2005. The HTLV-1 Tax protein binding domain of cyclin-dependent kinase 4 (CDK4) includes the regulatory PSTAIRE helix. Retrovirology 2:54.

    PubMed  Google Scholar 

  • Furukawa, Y., Kubota, R., Tara, M., et al. 2001. Existence of escape mutant in HTLV-I tax during the development of adult T-cell leukemia. Blood. 97:987–993.

    PubMed  CAS  Google Scholar 

  • Gabet, A. S., Mortreux, F., Charneau, P., Riou, P., Duc-Dodon, M., Wu, Y., Jeang, K. T., and Wattel, E. 2003. Inactivation of hTERT transcription by Tax. Oncogene 22:3734–3741.

    PubMed  CAS  Google Scholar 

  • Galli, U. M., Sauter, M., Lecher, B., et al. 2005. Human endogenous retrovirus rec interferes with germ cell development in mice and may cause carcinoma in situ, the predecessor lesion of germ cell tumors. Oncogene 24:3223–3228.

    PubMed  CAS  Google Scholar 

  • Gallo, R. C. 2005. History of the discoveries of the first human retroviruses: HTLV-1 and HTLV-2. Oncogene 24:5926–5930.

    PubMed  CAS  Google Scholar 

  • Gatza, M. L., Watt, J. C., and Marriott, S. 2003. Cellular transformation by the HTLV-I Tax protein, a jack-of-all-trades. Oncogene 22:5141–5149.

    PubMed  CAS  Google Scholar 

  • Gaudray, G., Gachon, F., Basbous, J., et al. 2002. The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription. J. Virol. 76:12813–12822.

    PubMed  CAS  Google Scholar 

  • Gifford, R., and Tristem, M. 2003. The evolution, distribution and diversity of endogenous retroviruses. Virus Genes 26:291–315.

    PubMed  CAS  Google Scholar 

  • Grassmann, R., Aboud, M., and Jeang, K. T. 2005. Molecular mechanisms of cellular transformation by HTLV-1 Tax. Oncogene 24:5976–5985.

    PubMed  CAS  Google Scholar 

  • Green, J. E., Begley, G., Wagner, D. K., et al. 1989. Transactivation of GM-CSF and the interleukin 2 receptor in transgenic mice carrying th HTLV-I tax gene. Mol. Cell Biol. 9:4731–4737.

    PubMed  CAS  Google Scholar 

  • Green, P. L., Ross, T. M., Chen, I. S. Y., et al. 1995. Human T-cell leukemia virus type II nucleotide sequences between env and the last exon of tax/rex are not required for viral replication or cellular transformation. J. Virol. 69:387–394.

    PubMed  CAS  Google Scholar 

  • Grossman, W. J., Kimata, J. T., Wong, F. H., et al. 1995. Development of leukemia in mice transgenic for the tax gene of human T-cell leukemia virus type I. Proc. Natl. Acad. Sci. U S A. 92:1057–1061.

    PubMed  CAS  Google Scholar 

  • Hall, W. W., and Fujii, M. 2005. Deregulation of cell-signaling pathways in HTLV-1 infection. Oncogene 24:5965–5975.

    PubMed  CAS  Google Scholar 

  • Haller, K., Wu, Y., Derow, E., et al. 2002. Physical interaction of human T-cell leukemia virus type 1 tax with cyclin-dependent kinase 4 stimulates the phosphorylation of retinoblastoma protein. Mol. Cell Biol. 22:3327–3338.

    PubMed  CAS  Google Scholar 

  • Higuchi, M., Matsuda, T., Mori, N., et al. 2005. Elevated expression of CD30 in adult T-cell leukemia cell lines: possible role in constitutive NF-kappaB activation. Retrovirology 2:29.

    PubMed  Google Scholar 

  • Hirata, A., Higuchi, M., Niinuma, A., et al. 2004. PDZ domain-binding motif of human T-cell leukemia virus type 1 Tax oncoprotein augments the transforming activity in a rat fibroblast cell line. Virology 318:327–336.

    PubMed  CAS  Google Scholar 

  • Hoeijmakers, J. H. 2001. Genome maintenance mechanisms for preventing cancer. Nature 411:366–374.

    PubMed  CAS  Google Scholar 

  • Igakura, T., Stinchcombe, J. C., Goon, P. K., et al. 2003. Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299:1713–1716.

    PubMed  CAS  Google Scholar 

  • Iha, H., Kibler, K. V., Yedavalli, V. R., et al. 2003. Segregation of NF-kappaB activation through NEMO/IKKgamma by Tax and TNFalpha: implications for stimulus-specific interruption of oncogenic signaling. Oncogene 22:8912–8923.

    PubMed  CAS  Google Scholar 

  • Ikezoe, T., Nishioka, C., Bandobashi, K., et al. 2007. Longitudinal inhibition of PI3K/Akt/mTOR signaling by LY294002 and rapamycin induces growth arrest of adult T-cell leukemia cells. Leuk. Res. 31:673–682.

    PubMed  CAS  Google Scholar 

  • Ishidate, T., Matsumine, A., Toyoshima, K., et al. 2000. The APC-hDLG complex negatively regulates cell cycle progression from the G0/G1 to S phase. Oncogene 19:365–372.

    PubMed  CAS  Google Scholar 

  • Ishioka, K., Higuchi, M., Takahashi, M., et al. 2006. Inactivation of tumor suppressor Dlg1 augments transformation of a T-cell line induced by human T-cell leukemia virus type 1 Tax protein. Retrovirology 3:71.

    PubMed  Google Scholar 

  • Iwanaga, R., Ohtani, K., Hayashi, T., et al. 2001. Molecular mechanism of cell cycle progression induced by the oncogene product Tax of human T-cell leukemia virus type I. Oncogene 20:2055–2067.

    PubMed  CAS  Google Scholar 

  • Iwanaga, Y., Kasai, T., Kibler, K., et al. 2002. Characterization of regions in hsMAD1 needed for binding hsMAD2. A polymorphic change in an hsMAD1 leucine zipper affects MAD1-MAD2 interaction and spindle checkpoint function. J. Biol. Chem. 277:31005–31013.

    PubMed  CAS  Google Scholar 

  • Jeang, K. T. 2001. Functional activities of the human T-cell leukemia virus type I Tax oncoprotein: cellular signaling through NF-kappa B. Cytokine Growth Factor Rev. 12:207–217.

    PubMed  CAS  Google Scholar 

  • Jeang, K. T., Widen, S. G., Semmes, O. J., et al. 1990. HTLV-I transactivator protein, Tax, is a transrepressor of human B-polymerase gene. Science 247:1082–1084.

    PubMed  CAS  Google Scholar 

  • Jeong, S. J., Pise-Masison, C. A., Radonovich, M. F., et al. 2005. Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene 24:6719–6728.

    PubMed  CAS  Google Scholar 

  • Jin, D. Y., Spencer, F., and Jeang, K. T. 1998. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93:81–91.

    PubMed  CAS  Google Scholar 

  • Kamihira, S., Atogami, S., Sohda, H., et al. 1994. DNA aneuploidy of adult T-cell leukemia cells. Leuk. Res. 18:79–84.

    PubMed  CAS  Google Scholar 

  • Kao, S. Y., Lemoine, F. J., Marriott, S. J. 2000. Suppression of DNA repair by human T cell leukemia virus type 1 Tax is rescued by a functional p53 signaling pathway. J. Biol. Chem. 275:35926–35931.

    PubMed  CAS  Google Scholar 

  • Kao, S. Y., Lemoine, F. J., and Marriott, S. J. 2001. p53-independent induction of apoptosis by the HTLV-I tax protein following UV irradiation. Virology 291:292–298.

    PubMed  CAS  Google Scholar 

  • Kao, S. Y., and Marriot, S. J. 1999. Disruption of nucleotide excision by the human T-cell leukemia virus type 1 Tax protein. J. Virol. 73:4299–4304.

    PubMed  CAS  Google Scholar 

  • Kasai, T., Iwanaga, Y., Iha, H., et al. 2002. Prevalent loss of mitotic spindle checkpoint in adult T-cell leukemia confers resistance to microtubule inhibitors. J. Biol. Chem. 277:5187–5193.

    PubMed  CAS  Google Scholar 

  • Kasai, T., and Jeang, K. T. 2004. Two discrete events, human T-cell leukemia virus type I Tax oncoprotein expression and a separate stress stimulus, are required for induction of apoptosis in T-cells. Retrovirology 1:7.

    PubMed  Google Scholar 

  • Kashanchi, F., and Brady, J. N. 2005. Transcriptional and post-transcriptional gene regulation of HTLV-1 Oncogene. 24:5938–5951.

    CAS  Google Scholar 

  • Kehn, K., Fuente Cde, L., Strouss, K., et al. 2005. The HTLV-I Tax oncoprotein targets the retinoblastoma protein for proteasomal degradation. Oncogene 24:525–540.

    PubMed  CAS  Google Scholar 

  • Koiwa, T., Hamano-Usami, A., Ishida, T., et al. 2002. 5’-long terminal repeat-selective CpG methylation of latent human T-cell leukemia virus type 1 provirus in vitro and in vivo. J. Virol. 76:9389–9397.

    PubMed  CAS  Google Scholar 

  • Kuo, Y. L. and Giam, C. Z. 2006. Activation of the anaphase promoting complex by HTLV-1 tax leads to senescence. EMBO. J. 25:1741–1752.

    PubMed  CAS  Google Scholar 

  • Lairmore, M., and Franchini, G. 2007. Human T-Cell Leukemia Virus Types 1 and 2. In Fields Virology, ed. B. Fields, D. Knipe, P. Howley et al., pp. 2071–2106. Philadelphia: Lippincott Williams, and Wilkins.

    Google Scholar 

  • Lairmore, M. D., Silverman, L., and Ratner, L. 2005. Animal models for human T-lymphotropic virus type 1 (HTLV-1) infection and transformation. Oncogene 24:6005–6015.

    PubMed  CAS  Google Scholar 

  • Lander, E. S., Linton, L. M., Birren, B., et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921.

    PubMed  CAS  Google Scholar 

  • Larocca, D., Chao, L. A., Seto, M. H., et al. 1989. Human T-cell leukemia virus minus strand transcription in infected cells. Biochem. Biophys. Res. Commun. 163:1006–1013.

    PubMed  CAS  Google Scholar 

  • Lavie, L., Medstrand, P., Schempp, W., et al. 2004. Human endogenous retrovirus family HERV-K(HML-5): Status, evolution, and reconstruction of an ancient betaretrovirus in the human genome. J. Virol. 78:8788–8798.

    PubMed  CAS  Google Scholar 

  • Leao, M., Anderton, E., Wade, M., et al. 2007. Epstein-barr virus-induced resistance to drugs that activate the mitotic spindle assembly checkpoint in Burkitt’s lymphoma cells. J. Virol. 81:248–260.

    PubMed  CAS  Google Scholar 

  • Lee. S. S., Glaunsinger, B., Mantovani, F., et al. 2000. Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J. Virol. 74:9680–9693.

    PubMed  CAS  Google Scholar 

  • Lee, S. S., Weiss, R. S., and Javier, R. T. 1997. Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc. Natl. Acad. Sci. U S A. 94:6670–6675.

    PubMed  CAS  Google Scholar 

  • Lemasson, I., Thebault, S., Sardet, C., et al. 1998. Activation of E2F-mediated transcription by human T-cell leukemia virus type I Tax protein in a p16(INK4A)-negative T-cell line. J. Biol. Chem. 273:23598–23604.

    PubMed  CAS  Google Scholar 

  • Lemoine, F. J., and Marriott, S. J. 2002. Genomic instability driven by the human T-cell leukemia virus type I (HTLV-I) oncoprotein, Tax. Oncogene 21:7230–7234.

    CAS  Google Scholar 

  • Levine, A. J., Finlay, C. A., and Hinds, P. W. 2004. P53 is a tumor suppressor gene. Cell 116:S67–69.

    PubMed  CAS  Google Scholar 

  • Li, J., Chen, H., Tang, M. S., Shi, X., Amin, S., Desai, D., Costa, M., and Huang, C. 2004. PI-3K and Akt are mediators of AP-1 induction by 5-MCDE in mouse epidermal Cl41 cells. J Cell Biol. 165:77–86.

    PubMed  CAS  Google Scholar 

  • Liu, B., Hong, S., Tang, Z., et al. 2005. HTLV-I Tax directly binds the Cdc20-associated anaphase-promoting complex and activates it ahead of schedule. Proc. Natl. Acad. Sci. U S A. 102:63–68.

    PubMed  CAS  Google Scholar 

  • Loeb, K. R., and Loeb, L. A. 2000. Significance of multiple mutations in cancer. Carcinogenesis 21:379–385.

    PubMed  CAS  Google Scholar 

  • Lower, R. 1999. The pathogenic potential of endogenous retroviruses: Facts and fantasies. Trends Microbiol. 7:350–356.

    PubMed  CAS  Google Scholar 

  • Lower, R., Boller, K., Hasenmaier, B., et al. 1993. Identification of human endogenous retroviruses with complex mRNA expression and particle formation. Proc. Natl. Acad. Sci. U S A. 90:4480–4484.

    PubMed  CAS  Google Scholar 

  • Lower, R., Lower, J., and Kurth, R. 1996. The viruses in all of us: Characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl. Acad. Sci. U S A. 93:5177–5184.

    PubMed  CAS  Google Scholar 

  • Magin-Lachmann, C., Hahn, S., Strobel, H., et al. 2001. Rec (formerly Corf) function requires interaction with a complex, folded RNA structure within its responsive element rather than binding to a discrete specific binding site. J. Virol. 75:10359–10371.

    PubMed  CAS  Google Scholar 

  • Magin, C., Lower, R., and Lower, J. 1999. cORF and RcRE, the Rev/Rex and RRE/RxRE homologues of the human endogenous retrovirus family HTDV/HERV-K. J. Virol. 73:9496–9507.

    PubMed  CAS  Google Scholar 

  • Majone, F., and Jeang, K. T. 2000. Clastogenic effect of the human T-cell leukemia virus type I Tax oncoprotein correlates with unstabilized DNA breaks. J. Biol. Chem. 275:32906–32910.

    PubMed  CAS  Google Scholar 

  • Majone, F., Luisetto, R., Zamboni, D., et al. 2005. Ku protein as a potential human T-cell leukemia virus type 1 (HTLV-1) Tax target in clastogenic chromosomal instability of mammalian cells. Retrovirology 2:45.

    PubMed  Google Scholar 

  • Marriott, S. J., Lemoine, F. J., and Jeang, K. T. 2002. Damaged DNA and miscounted chromosomes: Human T cell leukemia virus type I tax oncoprotein and genetic lesions in transformed cells. J. Biomed. Sci. 9:292–298.

    PubMed  CAS  Google Scholar 

  • Marriott, S. J. and Semmes, O. J. 2005. Impact of HTLV-I Tax on cell cycle progression and the cellular DNA damage repair response. Oncogene 24:5986–5995.

    PubMed  CAS  Google Scholar 

  • Matsumine, A., Ogai, A., Senda, T., et al. 1996. Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science 272:1020–1023.

    PubMed  CAS  Google Scholar 

  • Matsumoto, J., Ohshima, T., Isono, O., et al. 2005. HTLV-1 HBZ suppresses AP-1 activity by impairing both the DNA-binding ability and the stability of c-Jun protein. Oncogene 24:1001–1010.

    PubMed  CAS  Google Scholar 

  • Matsuoka, M., and Jeang, K. T. 2005. Human T-cell leukemia virus type I at age 25: A progress report. Cancer Res. 65:4467–4470.

    PubMed  CAS  Google Scholar 

  • Matsuoka, M., and Jeang, K. T. 2007. Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat. Rev. Cancer 7:270–280.

    PubMed  CAS  Google Scholar 

  • Mesnard, J. M., Barbeau, B., and Devaux, C. 2006. HBZ, a new important player in the mystery of adult T-cell leukemia. Blood 108:3979–3982.

    PubMed  CAS  Google Scholar 

  • Miyake, H., Suzuki, T., Hirai, H., et al. 1999. Trans-activator Tax of human T-cell leukemia virus type 1 enhances mutation frequency of the cellular genome. Virology 253:155–161.

    PubMed  CAS  Google Scholar 

  • Miyazato, A., Sheleg, S., Iha, H., et al. 2005. Evidence for NF-kappaB- and CBP-independent repression of p53’s transcriptional activity by human T-cell leukemia virus type 1 Tax in mouse embryo and primary human fibroblasts. J. Virol. 79:9346–9350.

    PubMed  CAS  Google Scholar 

  • Morimoto, H., Tsukada, J., Kominato, Y., et al. 2005. Reduced expression of human mismatch repair genes in adult T-cell leukemia. Am. J. Hematol. 78:100–107.

    PubMed  CAS  Google Scholar 

  • Morin, G. B. 1991. Recognition of a chromosome truncation site associated with alpha-thalassaemia by human telomerase. Nature 353:454–456.

    PubMed  CAS  Google Scholar 

  • Moyes, D., Griffiths, D. J., and Venables, P. J. 2007. Insertional polymorphisms: a new lease of life for endogenous retroviruses in human disease. Trends Genet. 23:326–333.

    PubMed  CAS  Google Scholar 

  • Mulloy, J. C., Kislyakova, T., Cereseto, A., et al. 1998. Human T-cell lymphotropic/leukemia virus type 1 Tax abrogates p53- induced cell cycle arrest and apoptosis through its CREB/ATF functional domain. J. Virol. 72:8852–8860.

    PubMed  CAS  Google Scholar 

  • Musacchio, A., and Hardwick, K. G. 2002. The spindle checkpoint: structural insights into dynamic signalling. Nat. Rev. Mol. Cell Biol. 3:731–741.

    PubMed  CAS  Google Scholar 

  • Muster, T., Waltenberger, A., Grassauer, A., et al. 2003. An endogenous retrovirus derived from human melanoma cells. Cancer Res. 63:8735–8741.

    PubMed  CAS  Google Scholar 

  • Nerenberg, M., Hinrichs, S. M., Reynolds, R. K., et al. 1987. The tat gene of human T-lymphotrophic virus type I induces mesenchymal tumors in transgenic mice. Science 237:1324–1329.

    PubMed  CAS  Google Scholar 

  • Neuveut, C., Low, K. G., Maldarelli, F., et al. 1998. Human T-cell leukemia virus type 1 Tax and cell cycle progression: role cyclin D-cdk and p110Rb. Mol. Cel. Biol. 18:3620–3632.

    CAS  Google Scholar 

  • Ng, P. W., Iha, H., Iwanaga, Y., et al. 2001. Genome-wide expression changes induced by HTLV-1 Tax: evidence for MLK- 3 mixed lineage kinase involvement in Tax-mediated NF-kappaB activation. Oncogene 20:4484–4496.

    PubMed  CAS  Google Scholar 

  • Nicot, C., Harrod, R. L., Ciminale, V., et al. 2005. Human T-cell leukemia/lymphoma virus type 1 nonstructural genes and their functions. Oncogene 24:6026–6034.

    PubMed  CAS  Google Scholar 

  • Nie, J., Li, S. S., McGlade, C. J. 2004. A novel PTB-PDZ domain interaction mediates isoform-specific ubiquitylation of mammalian Numb. J. Biol. Chem. 279:20807–20815.

    PubMed  CAS  Google Scholar 

  • Nie, J., McGill, M. A., Dermer, M., et al. 2002. LNX functions as a RING type E3 ubiquitin ligase that targets the cell fate determinant Numb for ubiquitin-dependent degradation. EMBO. J. 21:93–102.

    PubMed  CAS  Google Scholar 

  • Nigg, E. A. 2002. Centrosome aberrations: cause or consequence of cancer progression? Nat. Rev. Cancer 2:815–825.

    PubMed  CAS  Google Scholar 

  • Nitta, T., Kanai, M., Sugihara, E., et al. 2006. Centrosome amplification in adult T-cell leukemia and human T-cell leukemia virus type 1 Tax-induced human T cells. Cancer Sci. 97:836–841.

    PubMed  CAS  Google Scholar 

  • Peebles, R. S., Maliszewski, C. R., Sato, T. A., et al. 1995. Abnormal B-cell function in HTLV-I-tax transgenic mice. Oncogene 10:1045–1051.

    PubMed  CAS  Google Scholar 

  • Peloponese, J. M. Jr., Haller, K., Miyazato, A., et al. 2005. Abnormal centrosome amplification in cells through the targeting of Ran-binding protein-1 by the human T cell leukemia virus type-1 Tax oncoprotein. Proc. Natl. Acad. Sci. U S A. 102:18974–18979.

    PubMed  CAS  Google Scholar 

  • Peloponese, J. M. Jr., and Jeang, K. T. 2006. Role for Akt/protein kinase B and activator protein-1 in cellular proliferation induced by the human T-cell leukemia virus type 1 tax oncoprotein. J. Biol. Chem. 281:8927–8938.

    PubMed  CAS  Google Scholar 

  • Philpott, S. M., and Buehring, G. C. 1999. Defective DNA repair in cells with human T-cell leukemia/bovine leukemia viruses: Role of tax gene. J. Natl. Cancer Inst. 91:933–942.

    PubMed  CAS  Google Scholar 

  • Pihan, G. A., Purohit, A., Wallace, J., et al. 2001. Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res. 61:2212–2219.

    PubMed  CAS  Google Scholar 

  • Pise-Masison, C. A., Mahieux, R., Radonovich, M., et al. 2000. Insights into the molecular mechanism of p53 inhibition by HTLV type 1 Tax. AIDS. Res. Hum. Retroviruses 16:1669–1675.

    PubMed  CAS  Google Scholar 

  • Pise-Masison, C. A., Radonovich, M., Sakaguchi, K., et al. 1998. Phosphorylation of p53: a novel pathway for p53 inactivation in human T- cell lymphotropic virus type 1-transformed cells. J. Virol. 72:6348–6355.

    PubMed  CAS  Google Scholar 

  • Rasnick, D. 2002. Aneuploidy theory explains tumor formation, the absence of immune surveillance, and the failure of chemotherapy. Cancer Genet. Cytogenet. 136:66–72.

    CAS  Google Scholar 

  • Ressler, S., Morris, G. F., and Marriott, S. J. 1997. Human T-cell leukemia virus type 1 Tax transactivates the human proliferating cell nuclear antigen promoter, J. Virol. 71:1181–1190.

    PubMed  CAS  Google Scholar 

  • Robek, M. D., and Ratner, L. 1999. Immortalization of CD4+ and CD8+ T-lymphocytes by human T-cell leukemia virus type 1 Tax mutants expressed in a functional molecular clone. J. Virol. 73:4856–4865.

    PubMed  CAS  Google Scholar 

  • Ross, T. M., Minella, A. C., Fang, Z. Y., et al. 1997. Mutational analysis of human T-cell leukemia virus type 2 Tax. J. Virol. 71:8912–8917.

    PubMed  CAS  Google Scholar 

  • Ross, T. M., Narayan, M., Fang, Z. Y., et al. 2000. Tax transactivation of both NFκB and CREB/ATF is essential for Human T-cell leukemia virus type 2-mediated transformation of primary human T-cells. J. Virol. 74:2655–2662.

    PubMed  CAS  Google Scholar 

  • Ross, T. M., Pettiford, S. M., and Green, P. L. 1996. The tax gene of human T-cell leukemia virus type 2 is essential for transformation of human T lymphocytes. J. Virol. 70:5194–5202.

    PubMed  CAS  Google Scholar 

  • Rousset, R., Fabre, S., Desbois, C., et al. 1998. The C-terminus of the HTLV-1 Tax oncoprotein mediates interaction with the PDZ domain of cellular proteins. Oncogene 16:643–654.

    PubMed  CAS  Google Scholar 

  • Salisbury, J. L., D’Assoro, A. B., and Lingle, W. L. 2004. Centrosome amplification and the origin of chromosomal instability in breast cancer. J. Mammary Gland Biol. Neoplasia 9:275–283.

    PubMed  Google Scholar 

  • Santiago, F., Clark, E., Chong, S., et al. 1999. Transcriptional up-regulation of the cyclin D2 gene and acquisition of new cyclin-dependent kinase partners in human T-cell leukemia virus type 1-infected cells. J. Virol. 73:9917–9927.

    PubMed  CAS  Google Scholar 

  • Satoh, M., Toma, H., Sugahara, K., et al. 2002. Involvement of IL-2/IL-2R system activation by parasite antigen in polyclonal expansion of CD4(+)25(+) HTLV-1-infected T-cells in human carriers of both HTLV-1 and S. stercoralis. Oncogene 21:2466–2475.

    PubMed  CAS  Google Scholar 

  • Satou, Y., Yasunaga, J., Yoshida, M., et al. 2006. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc. Natl. Acad. Sci. U S A. 103:720–725.

    PubMed  CAS  Google Scholar 

  • Schmitt, I., Rosin, O., Rohwer, P., et al. 1998. Stimulation of cyclin-dependent kinase activity and G1- to S-phase transition in human lymphocytes by the human T-cell leukemia/lymphotropic virus type 1 Tax protein. J. Virol. 72:633–640.

    PubMed  CAS  Google Scholar 

  • Schneeweiss, A., Sinn, H. P., Ehemann, V., et al. 2003. Centrosomal aberrations in primary invasive breast cancer are associated with nodal status and hormone receptor expression. Int. J. Cancer 107:346–352.

    PubMed  CAS  Google Scholar 

  • Song, G., Ouyang, G., and Bao, S. 2005. The activation of Akt/PKB signaling pathway and cell survival. J. Cell Mol. Med. 9:59–71.

    PubMed  CAS  Google Scholar 

  • Stoye, J. P. 2001. Endogenous retroviruses: still active after all these years? Curr. Biol. 11:R914–R916.

    PubMed  CAS  Google Scholar 

  • Sun, S. C., and Yamaoka, S, 2005. Activation of NF-kappaB by HTLV-I and implications for cell transformation. Oncogene 24:5952–5964.

    PubMed  CAS  Google Scholar 

  • Suzuki, T., Ohsugi, Y., Uchida-Toita, M., et al. 1999. Tax oncoprotein of HTLV-1 binds to the human homologue of Drosophila discs large tumor suppressor protein, hDLG, and perturbs its function in cell growth control. Oncogene 18:5967–5972.

    PubMed  CAS  Google Scholar 

  • Switzer, W. M., Qari, S. H., Wolfe, N. D., et al. 2006. Ancient origin and molecular features of the novel human T-lymphotropic virus type 3 revealed by complete genome analysis. J. Virol. 80:7427–7438.

    PubMed  CAS  Google Scholar 

  • Tabakin-Fix, Y., Azran, I., Schavinky-Khrapunsky, Y., et al. 2006. Functional inactivation of p53 by human T-cell leukemia virus type 1 Tax protein: mechanisms and clinical implications. Carcinogenesis 27:673–681.

    PubMed  CAS  Google Scholar 

  • Takeda, S., Maeda, M., Morikawa, S., et al. 2004. Genetic and epigenetic inactivation of tax gene in adult T-cell leukemia cells. Int. J. Cancer 109:559–567.

    PubMed  CAS  Google Scholar 

  • Tamiya, S., Matsuoka, M., Etoh, K., Watanabe, T., Kamihira, S., Yamaguchi, K., and Takatsuki, K. 1996. Two types of defective human T-lymphotropic virus type I provirus in adult T-cell leukemia. Blood 88:3065–3073.

    PubMed  CAS  Google Scholar 

  • Taniguchi, Y., Nosaka, K., Yasunaga, J., et al. 2005. Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms. Retrovirology 2:64.

    PubMed  Google Scholar 

  • Vafa, O., Wade, M., Kern, S., et al. 2002. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol. Cell 9:1031–1044.

    PubMed  CAS  Google Scholar 

  • Vanhee-Brossollet, C., Thoreau, H., Serpente, N., et al. 1995. A natural antisense RNA derived from the HIV-1 env gene encodes a protein which is recognized by circulating antibodies of HIV+ individuals. Virology 206:196–202.

    PubMed  CAS  Google Scholar 

  • Wilkie, A. O., Lamb, J., Harris, P. C., et al. 1990. A truncated human chromosome 16 associated with alpha thalassaemia is stabilized by addition of telomeric repeat TTAGGG)n. Nature 346:868–871.

    PubMed  CAS  Google Scholar 

  • Wood, R. D., and Shivji, M. K. 1997. Which DNA polymerases are used for DNA-repair in eukaryotes? Carcinogenesis 18:605–610.

    PubMed  CAS  Google Scholar 

  • Woods, D. F., and Bryant, P. J. 1991. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 66:451–464.

    PubMed  CAS  Google Scholar 

  • Xie, L., Yamamoto, B., Haoudi, A., et al. 2006. PDZ binding motif of HTLV-1 Tax promotes virus-mediated T-cell proliferation in vitro and persistence in vivo. Blood 107:1980–1988.

    PubMed  CAS  Google Scholar 

  • Ye, J., Sileverman, L., Lairmore, M. D., et al. 2003. HTLV-1 Rex is required for viral spread and persistence in vivo but is dispensable for cellular immortalization in vitro. Blood 102:3963–3969.

    PubMed  CAS  Google Scholar 

  • Yoshida, M. 2005. Discovery of HTLV-1, the first human retrovirus, its unique regulatory mechanisms, and insights into pathogenesis. Oncogene 24:5931–5937.

    PubMed  CAS  Google Scholar 

  • Younis, I., and Green, P. L. 2005. The human T-cell leukemia virus Rex protein. Front. Biosci. 10:431–445.

    PubMed  CAS  Google Scholar 

  • Zhou, J., Ahn, J., Wilson, S. H., et al. 2001. A role for p53 in base excision repair. EMBO J. 20:914–923.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick L. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kesic, M., Green, P.L. (2010). Retroviruses and Insights into Cancer: Retroviral Regulatory/Accessory Genes and Cancer. In: Dudley, J. (eds) Retroviruses and Insights into Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09581-3_6

Download citation

Publish with us

Policies and ethics