Endogenous Retroviruses and Cancer

  • Jaquelin P. DudleyEmail author
  • Jennifer A. Mertz
  • Sanchita Bhadra
  • Massimo Palmarini
  • Christine A. Kozak


Endogenous retroviruses (ERVs) abound in avian and mammalian genomes, including humans, as a result of germline infections by exogenous retroviruses. Most ERVs are defective for production of infectious virus. The defectiveness of ERVs is generally inversely correlated with the length of their residence in the host germline. These ERVs affect retrovirus-induced disease in a number of ways, including manipulation of the immune response, inhibition or facilitation of entry or other steps of virus replication, or as participants in the generation of infectious pathogenic viruses. Ancient ERVs likely have neutral or beneficial roles for the hosts that carry them. However, multiple examples show that additional pathogenic retroviruses will continue to emerge using ERVs as a source of genetic diversity.


Endogenous provirus Recombination Host immunity Pathogenesis ERVs 


  1. Acha-Orbea, H., and MacDonald, H. R. 1995. Superantigens of mouse mammary tumor virus. Ann. Rev. Immunol. 13:459–486.CrossRefGoogle Scholar
  2. Alamgir, A. S., Owens, N., Lavignon, M., Malik, F., and Evans, L. H. 2005. Precise identification of endogenous proviruses of NFS/N mice participating in recombination with moloney ecotropic murine leukemia virus (MuLV) to generate polytropic MuLVs. J. Virol. 79:4664–4671.PubMedCrossRefGoogle Scholar
  3. Alberti, A., Murgia, C., Liu, S. L., Mura, M., Cousens, C., Sharp, M., Miller, A. D., and Palmarini, M. 2002. Envelope-induced cell transformation by ovine betaretroviruses. J. Virol. 76:5387–5394.PubMedCrossRefGoogle Scholar
  4. Alian, A., Sela-Donenfeld, D., Panet, A., and Eldor, A. 2000. Avian hemangioma retrovirus induces cell proliferation via the envelope (env) gene. Virology 276:161–168.PubMedCrossRefGoogle Scholar
  5. Allen, T. E., Sherrill, K. J., Crispell, S. M., Perrott, M. R., Carlson, J. O., and DeMartini, J. C. 2002. The jaagsiekte sheep retrovirus envelope gene induces transformation of the avian fibroblast cell line DF-1 but does not require a conserved SH2 binding domain. J. Gen. Virol. 83:2733–2742.PubMedGoogle Scholar
  6. Anderson, M. M., Lauring, A. S., Burns, C. C., and Overbaugh, J. 2000. Identification of a cellular cofactor required for infection by feline leukemia virus. Science 287:1828–1830.PubMedCrossRefGoogle Scholar
  7. Arnaud, F., Caporale, M., Varela, M., Biek, R., Chessa, B., Alberti, A., Golder, M., Mura, M., Zhang, Y. P., Yu, L., Pereira, F., DeMartini, J. C., Leymaster, K., Spencer, T. E., and Palmarini, M. 2007a. A paradigm for virus-host coevolution: sequential counter-adaptations between endogenous and exogenous retroviruses. PLoS Pathog. 3:e170.PubMedCrossRefGoogle Scholar
  8. Arnaud, F., Murcia, P. R., and Palmarini, M. 2007b. Mechanisms of late restriction induced by an endogenous retrovirus. J. Virol. 81:11441–11451.PubMedCrossRefGoogle Scholar
  9. Ball, J. K., Arthur, L. O., and Dekaban, G. A. 1985. The involvement of a type-B retrovirus in the induction of thymic lymphomas. Virology 140:159–172.PubMedCrossRefGoogle Scholar
  10. Ball, J. K., Diggelmann, H., Dekaban, G. A., Grossi, G. F., Semmler, R., Waight, P. A., and Fletcher, R. F. 1988. Alterations in the U3 region of the long terminal repeat of an infectious thymotropic type B retrovirus. J. Virol. 62:2985–2993.PubMedGoogle Scholar
  11. Bannert, N., and Kurth, R. 2004. Retroelements and the human genome: new perspectives on an old relation. Proc. Natl. Acad. Sci. U S A 101:14572–14579.PubMedCrossRefGoogle Scholar
  12. Barnett, A., Mustafa, F., Wrona, T. J., Lozano, M., and Dudley, J. P. 1999. Expression of mouse mammary tumor virus superantigen mRNA in the thymus correlates with kinetics of self-reactive T-cell loss. J. Virol. 73:6634–6645.PubMedGoogle Scholar
  13. Bassin, R. H., Ruscetti, S., Ali, I., Haapala, D. K., and Rein, A. 1982. Normal DBA/2 mouse cells synthesize a glycoprotein which interferes with MCF virus infection. Virology 123:139–151.PubMedCrossRefGoogle Scholar
  14. Belshaw, R., Watson, J., Katzourakis, A., Howe, A., Woolven-Allen, J., Burt, A., and Tristem, M. 2007. Rate of recombinational deletion among human endogenous retroviruses. J. Virol. 81:9437–9442.PubMedCrossRefGoogle Scholar
  15. Benit, L., De, P. N., Casella, J. F., Callebaut, I., Cordonnier, A., and Heidmann, T. 1997. Cloning of a new murine endogenous retrovirus, MuERV-L, with strong similarity to the human HERV-L element and with a gag coding sequence closely related to the Fv1 restriction gene. J. Virol. 71:5652–5657.PubMedGoogle Scholar
  16. Best, S., Le Tissier, P., Towers, G., and Stoye, J. P. 1996. Positional cloning of the mouse retrovirus restriction gene Fv1 [see comments]. Nature 382:826–829.PubMedCrossRefGoogle Scholar
  17. Beutner, U., Kraus, E., Kitamura, D., Rajewsky, K., and Huber, B. T. 1994. B cells are essential for murine mammary tumor virus transmission, but not for presentation of endogenous superantigens. J. Exp. Med. 179:1457–1466.PubMedCrossRefGoogle Scholar
  18. Bhadra, S., Lozano, M. M., and Dudley, J. P. 2005. Conversion of mouse mammary tumor virus to a lymphomagenic virus. J. Virol. 79:12592–12596.PubMedCrossRefGoogle Scholar
  19. Bhadra, S., Lozano, M. M., and Dudley, J. P. 2009. BALB/Mtv-null mice responding to strong mouse mammary tumor virus superantigens restrict mammary tumorigenesis. J. Virol. 83:484–488.PubMedCrossRefGoogle Scholar
  20. Bhadra, S., Lozano, M. M., Payne, S. M., and Dudley, J. P. 2006. Endogenous MMTV Proviruses Induce Susceptibility to Both Viral and Bacterial Pathogens. PLoS Pathog. 2:e128.PubMedCrossRefGoogle Scholar
  21. Blikstad, V., Benachenhou, F., Sperber, G. O., and Blomberg, J. 2008. Evolution of human endogenous retroviral sequences: a conceptual account. Cell Mol. Life Sci. 65:3348–3365.Google Scholar
  22. Boeke, J. D., and Stoye, J. P. (1997) Retrotransposons, endogenous retroviruses, and the evolution of retroelements. In: Retroviruses. Cold Spring Harbor Laboratory Press, Plainview, NY, pp 343–436.Google Scholar
  23. Boller, K., Konig, H., Sauter, M., Mueller-Lantzsch, N., Lower, R., Lower, J., and Kurth, R. 1993. Evidence that HERV-K is the endogenous retrovirus sequence that codes for the human teratocarcinoma-derived retrovirus HTDV. Virology 196:349–353.PubMedCrossRefGoogle Scholar
  24. Boral, A. L., Okenquist, S. A., and Lenz, J. 1989. Identification of the SL3–3 virus enhancer core as a T-lymphoma cell-specific element. J. Virol. 63:76–84.PubMedGoogle Scholar
  25. Borisenko, L. 2003. Avian endogenous retroviruses. Folia Biol. (Praha) 49:177–182.Google Scholar
  26. Borisenko, L., and Rynditch, A. V. 2004. Complete nucleotide sequences of ALV-related endogenous retroviruses available from the draft chicken genome sequence. Folia Biol. (Praha) 50:136–141.Google Scholar
  27. Brennan, K. R., and Brown, A. M. 2004. Wnt proteins in mammary development and cancer. J. Mammary. Gland. Biol. Neoplasia. 9:119–131.PubMedCrossRefGoogle Scholar
  28. Brightman, B. K., Rein, A., Trepp, D. J., and Fan, H. 1991. An enhancer variant of Moloney murine leukemia virus defective in leukemogenesis does not generate detectable mink cell focus-inducing virus in vivo [published erratum appears in Proc Natl Acad Sci U S A 1991 Jun 1;88(11):5066]. Proc. Natl. Acad. Sci. U S A 88:2264–2268.PubMedCrossRefGoogle Scholar
  29. Broussard, D. R., Lozano, M. M., and Dudley, J. P. 2004. Rorγ (Rorc) is a common integration site in type B leukemogenic virus-induced T-cell lymphomas. J. Virol. 78:4943–4946.PubMedCrossRefGoogle Scholar
  30. Broussard, D. R., Mertz, J. A., Lozano, M., and Dudley, J. P. 2002. Selection for c-myc integration sites in polyclonal T-cell lymphomas. J. Virol. 76:2087–2099.PubMedCrossRefGoogle Scholar
  31. Brown, D. W., and Robinson, H. L. 1988. Influence of env and long terminal repeat sequences on the tissue tropism of avian leukosis viruses. J. Virol. 62:4828–4831.PubMedGoogle Scholar
  32. Buller, R. S., Sitbon, M., and Portis, J. L. 1988. The endogenous mink cell focus-forming (MCF) gp70 linked to the Rmcf gene restricts MCF virus replication in vivo and provides partial resistance to erythroleukemia induced by Friend murine leukemia virus. J. Exp. Med. 167:1535–1546.PubMedCrossRefGoogle Scholar
  33. Burmeister, T., Ebert, A. D., Pritze, W., Loddenkemper, C., Schwartz, S., and Thiel, E. 2004. Insertional polymorphisms of endogenous HERV-K113 and HERV-K115 retroviruses in breast cancer patients and age-matched controls. AIDS Res. Hum. Retroviruses 20:1223–1229.PubMedCrossRefGoogle Scholar
  34. Buscher, K., Hahn, S., Hofmann, M., Trefzer, U., Ozel, M., Sterry, W., Lower, J., Lower, R., Kurth, R., and Denner, J. 2006. Expression of the human endogenous retrovirus-K transmembrane envelope, Rec and Np9 proteins in melanomas and melanoma cell lines. Melanoma Res. 16:223–234.PubMedCrossRefGoogle Scholar
  35. Butel, J. S., Dusing-Swartz, S., Socher, S. H., and Medina, D. 1981. Partial expression of endogenous mouse mammary tumor virus in mammary tumors induced in BALB/c mice by chemical, hormonal, and physical agents. J. Virol. 38:571–580.PubMedGoogle Scholar
  36. Caporale, M., Arnaud, F., Mura, M., Golder, M., Murgia, C., and Palmarini, M. 2009. The signal peptide of a simple retrovirus envelope functions as a posttranscriptional regulator of viral gene expression. J. Virol. 83:4591–4604.PubMedCrossRefGoogle Scholar
  37. Caporale, M., Cousens, C., Centorame, P., Pinoni, C., De las, H. M., and Palmarini, M. 2006. Expression of the jaagsiekte sheep retrovirus envelope glycoprotein is sufficient to induce lung tumors in sheep. J. Virol. 80:8030–8037.PubMedCrossRefGoogle Scholar
  38. Celander, D., and Haseltine, W. A. 1984. Tissue-specific transcription preference as a determinant of cell tropism and leukaemogenic potential of murine retroviruses. Nature 312:159–162.PubMedCrossRefGoogle Scholar
  39. Chattopadhyay, S. K., Cloyd, M. W., Linemeyer, D. L., Lander, M. R., Rands, E., and Lowy, D. R. 1982. Cellular origin and role of mink cell focus-forming viruses in murine thymic lymphomas. Nature 295:25–31.PubMedCrossRefGoogle Scholar
  40. Chen, H., Bechtel, M. K., Shi, Y., Phipps, A., Mathes, L. E., Hayes, K. A., and Roy-Burman, P. 1998. Pathogenicity induced by feline leukemia virus, Rickard strain, subgroup A plasmid DNA (pFRA). J. Virol. 72:7048–7056.PubMedGoogle Scholar
  41. Cheng, H. H., Anderson, M. M., Hankenson, F. C., Johnston, L., Kotwaliwale, C. V., and Overbaugh, J. 2006. Envelope determinants for dual-receptor specificity in feline leukemia virus subgroup A and T variants. J. Virol. 80:1619–1628.PubMedCrossRefGoogle Scholar
  42. Cheng, H. H., Anderson, M. M., and Overbaugh, J. 2007. Feline leukemia virus T entry is dependent on both expression levels and specific interactions between cofactor and receptor. Virology 359:170–178.PubMedCrossRefGoogle Scholar
  43. Chesebro, B., Portis, J. L., Wehrly, K., and Nishio, J. 1983. Effect of murine host genotype on MCF virus expression, latency, and leukemia cell type of leukemias induced by Friend murine leukemia helper virus. Virology 128:221–233.PubMedCrossRefGoogle Scholar
  44. Chesters, P. M., Howes, K., Petherbridge, L., Evans, S., Payne, L. N., and Venugopal, K. 2002. The viral envelope is a major determinant for the induction of lymphoid and myeloid tumours by avian leukosis virus subgroups A and J, respectively. J. Gen. Virol. 83:2553–2561.PubMedGoogle Scholar
  45. Cho, B. C., Shaughnessy, J. D., Jr., Largaespada, D. A., Bedigian, H. G., Buchberg, A. M., and Jenkins, N. A., Copeland, N. G. 1995a. Frequent disruption of the Nf1 gene by a novel murine AIDS virus-related provirus in BXH-2 murine myeloid lymphomas. J. Virol. 69:7138–7146.PubMedGoogle Scholar
  46. Cho, K., Ferrick, D. A., and Morris, D. W. 1995b. Structure and biological activity of the subgenomic Mtv-6 endogenous provirus. Virology 206:395–402.PubMedCrossRefGoogle Scholar
  47. Chow, Y. H., Alberti, A., Mura, M., Pretto, C., Murcia, P., Albritton, L. M., and Palmarini, M. 2003. Transformation of rodent fibroblasts by the Jaagsiekte sheep retrovirus envelope is receptor independent and does not require the surface domain. J. Virol. 77:6341–6350.PubMedCrossRefGoogle Scholar
  48. Clausse, N., Baines, D., Moore, R., Brookes, S., Dickson, C., and Peters, G. 1993. Activation of both Wnt-1 and Fgf-3 by insertion of mouse mammary tumor virus downstream in the reverse orientation: a reappraisal of the enhancer insertion model. Virology 194:157–165.PubMedCrossRefGoogle Scholar
  49. Cloyd, M. W., and Chattopadhyay, S. K. 1986. A new class of retrovirus present in many murine leukemia systems. Virology 151:31–40.PubMedCrossRefGoogle Scholar
  50. Cloyd, M. W., Hartley, J. W., and Rowe, W. P. 1980. Lymphomagenicity of recombinant mink cell focus-inducing murine leukemia viruses. J. Exp. Med. 151:542–552.PubMedCrossRefGoogle Scholar
  51. Contreras-Galindo, R., Kaplan, M. H., Leissner, P., Verjat, T., Ferlenghi, I., Bagnoli, F., Giusti, F., Dosik, M. H., Hayes, D. F., Gitlin, S. D., and Markovitz, D. M. 2008. Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J. Virol. 82:9329–9336.PubMedCrossRefGoogle Scholar
  52. Corbin, A., Prats, A. C., Darlix, J. L., and Sitbon, M. 1994. A nonstructural gag-encoded glycoprotein precursor is necessary for efficient spreading and pathogenesis of murine leukemia viruses. J. Virol. 68:3857–3867.PubMedGoogle Scholar
  53. Cousens, C., Minguijon, E., Dalziel, R. G., Ortin, A., Garcia, M., Park, J., Gonzalez, L., Sharp, J. M., and De las, H. M. 1999. Complete sequence of enzootic nasal tumor virus, a retrovirus associated with transmissible intranasal tumors of sheep. J. Virol. 73:3986–3993.PubMedGoogle Scholar
  54. Crittenden, L. B., Fadly, A. M., and Smith, E. J. 1982. Effect of endogenous leukosis virus genes on response to infection with avian leukosis and reticuloendotheliosis viruses. Avian Dis. 26:279–294.PubMedCrossRefGoogle Scholar
  55. Crittenden, L. B., McMahon, S., Halpern, M. S., and Fadly, A. M. 1987. Embryonic infection with the endogenous avian leukosis virus Rous-associated virus-0 alters responses to exogenous avian leukosis virus infection. J. Virol. 61:722–725.PubMedGoogle Scholar
  56. Cullen, B. R., Raymond, K., and Ju, G. 1985. Transcriptional activity of avian retroviral long terminal repeats directly correlates with enhancer activity. J. Virol. 53:515–521.PubMedGoogle Scholar
  57. DeMartini, J. C., Carlson, J. O., Leroux, C., Spencer, T., and Palmarini, M. 2003. Endogenous retroviruses related to Jaagsiekte sheep retrovirus. Curr. Top. Microbiol. Immunol. 275: 117–137.PubMedCrossRefGoogle Scholar
  58. Denne, M., Sauter, M., Armbruester, V., Licht, J. D., Roemer, K., and Mueller-Lantzsch, N. 2007. Physical and functional interactions of human endogenous retrovirus proteins Np9 and rec with the promyelocytic leukemia zinc finger protein. J. Virol. 81:5607–5616.PubMedCrossRefGoogle Scholar
  59. DesGroseillers, L., Rassart, E., and Jolicoeur, P. 1983a. Thymotropism of murine leukemia virus is conferred by its long terminal repeat. Proc. Natl. Acad. Sci. U S A 80:4203–4207.PubMedCrossRefGoogle Scholar
  60. DesGroseillers, L., Villemur, R., and Jolicoeur, P. 1983b. The high leukemogenic potential of Gross passage A murine leukemia virus maps in the region of the genome corresponding to the long terminal repeat and to the 3′ end of env. J. Virol. 47:24–32.PubMedGoogle Scholar
  61. Dickson, C., Smith, R., Brookes, S., and Peters, G. 1984. Tumorigenesis by mouse mammary tumor virus: proviral activation of a cellular gene in the common integration region int-2. Cell 37:529–536.PubMedCrossRefGoogle Scholar
  62. Dirks, C., Duh, F. M., Rai, S. K., Lerman, M. I., and Miller, A. D. 2002. Mechanism of cell entry and transformation by enzootic nasal tumor virus. J. Virol. 76:2141–2149.PubMedCrossRefGoogle Scholar
  63. Dudley, J., and Risser, R. 1984. Amplification and novel locations of endogenous mouse mammary tumor virus genomes in mouse T-cell lymphomas. J. Virol. 49:92–101.PubMedGoogle Scholar
  64. Dudley, J. P. (2008) Mouse mammary tumor virus. In: Enyclopedia of Virology. Elsevier, Oxford, UK, in press.Google Scholar
  65. Duesberg, P. H., and Vogt, P. K. 1970. Differences between the ribonucleic acids of transforming and nontransforming avian tumor viruses. Proc. Natl. Acad. Sci. U S A 67:1673–1680.PubMedCrossRefGoogle Scholar
  66. Dunlap, K. A., Palmarini, M., and Spencer, T. E. 2006a. Ovine endogenous betaretroviruses (enJSRVs) and placental morphogenesis. Placenta 27:S135-S140.PubMedCrossRefGoogle Scholar
  67. Dunlap, K. A., Palmarini, M., Varela, M., Burghardt, R. C., Hayashi, K., Farmer, J. L., and Spencer, T. E. 2006b. Endogenous retroviruses regulate periimplantation placental growth and differentiation. Proc. Natl. Acad. Sci. U S A 103:14390–14395.PubMedCrossRefGoogle Scholar
  68. Ellermann, V., and Bang, O. 1908. Experimentelle Leukamie bei Huhnern. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene - Erste Abteilung Originale - Reihe A: Medizinische Mikrobiologie und Parasitologie 46:595–609.Google Scholar
  69. Etkind, P. R. 1989. Expression of the int-1 and int-2 loci in endogenous mouse mammary tumor virus-induced mammary tumorigenesis in the C3Hf mouse. J. Virol. 63:4972–4975.PubMedGoogle Scholar
  70. Etkind, P. R., Stewart, A. F., and Wiernik, P. H. 2008. Mouse mammary tumor virus (MMTV)-like DNA sequences in the breast tumors of father, mother, and daughter. Infect. Agent. Cancer 3:2.PubMedCrossRefGoogle Scholar
  71. Evans, L. H., Alamgir, A. S., Owens, N., Weber, N., Virtaneva, K., Barbian, K., Babar, A., Malik, F., and Rosenke, K. 2009. Mobilization of endogenous retroviruses in mice after infection with an exogenous retrovirus. J. Virol. 83:2429–2435.PubMedCrossRefGoogle Scholar
  72. Evans, L. H., and Cloyd, M. W. 1984. Generation of mink cell focus-forming viruses by Friend murine leukemia virus: recombination with specific endogenous proviral sequences. J. Virol. 49:772–781.PubMedGoogle Scholar
  73. Fadly, A. M., and Smith, E. J. 1997. Role of contact and genetic transmission of endogenous virus-21 in the susceptibility of chickens to avian leukosis virus infection and tumors. Poult. Sci. 76:968–973.PubMedGoogle Scholar
  74. Fan, H. 1997. Leukemogenesis by Moloney murine leukemia virus: a multistep process. Trends Microbiol. 5:74–82.PubMedCrossRefGoogle Scholar
  75. Fan, H., Palmarini, M., and DeMartini, J. C. 2003. Transformation and oncogenesis by Jaagsiekte sheep retrovirus. Curr. Top. Microbiol. Immunol. 275:139–177.PubMedCrossRefGoogle Scholar
  76. Faschinger, A., Rouault, F., Sollner, J., Lukas, A., Salmons, B., Gunzburg, W. H., and Indik, S. 2008. Mouse mammary tumor virus integration site selection in human and mouse genomes. J. Virol. 82:1360–1367.PubMedCrossRefGoogle Scholar
  77. Federspiel, M. J., Crittenden, L. B., Provencher, L. P., and Hughes, S. H. 1991. Experimentally introduced defective endogenous proviruses are highly expressed in chickens. J. Virol. 65:313–319.PubMedGoogle Scholar
  78. Frank, O., Verbeke, C., Schwarz, N., Mayer, J., Fabarius, A., Hehlmann, R., Leib-Mosch, C., and Seifarth, W. 2008. Variable transcriptional activity of endogenous retroviruses in human breast cancer. J. Virol. 82:1808–1818.PubMedCrossRefGoogle Scholar
  79. Frankel, W. N., Stoye, J. P., Taylor, B. A., and Coffin, J. M. 1990. A linkage map of endogenous murine leukemia proviruses [published erratum appears in Genetics 1990 Jun;125(2):455]. Genetics 124:221–236.PubMedGoogle Scholar
  80. Fredrickson, T. N., Morse, H. C., Yetter, R. A., Rowe, W. P., Hartley, J. W., and Pattengale, P. K. 1985. Multiparameter analyses of spontaneous nonthymic lymphomas occurring in NFS/N mice congenic for ecotropic murine leukemia viruses. Am. J. Pathol. 121:349–360.PubMedGoogle Scholar
  81. Gallahan, D., and Callahan, R. 1987. Mammary tumorigenesis in feral mice: identification of a new int locus in mouse mammary tumor virus (Czech II)-induced mammary tumors. J. Virol. 61:66–74.PubMedGoogle Scholar
  82. Gallahan, D., and Callahan, R. 1997. The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene 14:1883–1890.PubMedCrossRefGoogle Scholar
  83. Gama-Sosa, M. A., Breznik, T., Butel, J. S., Medina, D., and Cohen, J. C. 1987. Mammary preneoplasia and tumorigenesis in the BALB/c mouse: structure and modification of mouse mammary tumor virus DNA sequences. Virus Res. 7:1–15.PubMedCrossRefGoogle Scholar
  84. Gamble, T. R., Yoo, S., Vajdos, F. F., von Schwedler, U. K., Worthylake, D. K., Wang, H., McCutcheon, J. P., Sundquist, W. I., and Hill, C. P. 1997. Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278:849–853.PubMedCrossRefGoogle Scholar
  85. Garcia, M., Wellinger, R., Vessaz, A., and Diggelmann, H. 1986. A new site of integration for mouse mammary tumor virus proviral DNA common to BALB/cf(C3H) mammary and kidney adenocarcinomas. EMBO J. 5:127–134.PubMedGoogle Scholar
  86. Gardner, M. B. 1993. Genetic control of retroviral disease in aging wild mice. Genetica 91:199–209.PubMedCrossRefGoogle Scholar
  87. Gilbert, D. J., Neumann, P. E., Taylor, B. A., Jenkins, N. A., and Copeland, N. G. 1993. Susceptibility of AKXD recombinant inbred mouse strains to lymphomas. J. Virol. 67:2083–2090.PubMedGoogle Scholar
  88. Goedert, J. J., Rabkin, C. S., and Ross, S. R. 2006. Prevalence of serologic reactivity against four strains of mouse mammary tumour virus among US women with breast cancer. Br. J. Cancer. 94:548–551.PubMedCrossRefGoogle Scholar
  89. Golovkina, T. V., Chervonsky, A., Dudley, J. P., and Ross, S. R. 1992. Transgenic mouse mammary tumor virus superantigen expression prevents viral infection. Cell 69:637–645.PubMedCrossRefGoogle Scholar
  90. Golovkina, T. V., Dudley, J. P., Jaffe, A. B., and Ross, S. R. 1995. Mouse mammary tumor viruses with functional superantigen genes are selected during in vivo infection. Proc. Natl. Acad. Sci. U S A 92:4828–4832.PubMedCrossRefGoogle Scholar
  91. Golovkina, T. V., Dudley, J. P., and Ross, S. R. 1998. B and T cells are required for mouse mammary tumor virus spread within the mammary gland. J. Immunol. 161:2375–2382.PubMedGoogle Scholar
  92. Golovkina, T. V., Jaffe, A. B., and Ross, S. R. 1994. Coexpression of exogenous and endogenous mouse mammary tumor virus RNA in vivo results in viral recombination and broadens the virus host range. J. Virol. 68:5019–5026.PubMedGoogle Scholar
  93. Golovkina, T. V., Piazzon, I., Nepomnaschy, I., Buggiano, V., de Olano, V., and Ross, S. R. 1997. Generation of a tumorigenic milk-borne mouse mammary tumor virus by recombination between endogenous and exogenous viruses. J. Virol. 71:3895–3903.PubMedGoogle Scholar
  94. Golovkina, T. V., Prakash, O., and Ross, S. R. 1996. Endogenous mouse mammary tumor virus Mtv-17 is involved in Mtv-2-induced tumorigenesis in GR mice. Virology 218:14–22.PubMedCrossRefGoogle Scholar
  95. Gross, L. 1951. “Spontaneous” leukemia developing in C3H mice following inoculation in infancy, with AK-leukemic extracts, or AK-embrvos. Proc. Soc. Exp. Biol. Med. 76:27–32.PubMedGoogle Scholar
  96. Guasch, G., Popovici, C., Mugneret, F., Chaffanet, M., Pontarotti, P., Birnbaum, D., and Pebusque, M. J. 2003. Endogenous retroviral sequence is fused to FGFR1 kinase in the 8p12 stem-cell myeloproliferative disorder with t(8;19)(p12;q13.3). Blood 101:286–288.PubMedCrossRefGoogle Scholar
  97. Hahn, S., Ugurel, S., Hanschmann, K. M., Strobel, H., Tondera, C., Schadendorf, D., Lower, J., and Lower, R. 2008. Serological response to human endogenous retrovirus K in melanoma patients correlates with survival probability. AIDS Res. Hum. Retroviruses 24:717–723.PubMedCrossRefGoogle Scholar
  98. Hanafusa, H., Miyamoto, T., and Hanafusa, T. 1970. A cell-associated factor essential for formation of an infectious form of Rous sarcoma virus. Proc. Natl. Acad. Sci. U S A 66:314–321.PubMedCrossRefGoogle Scholar
  99. Hartley, J. W., Chattopadhyay, S. K., Lander, M. R., Taddesse-Heath, L., Naghashfar, Z., Morse, H. C., and Fredrickson, T. N. 2000. Accelerated appearance of multiple B cell lymphoma types in NFS/N mice congenic for ecotropic murine leukemia viruses. Lab. Invest. 80:159–169.PubMedCrossRefGoogle Scholar
  100. Hartley, J. W., Wolford, N. K., Old, L. J., and Rowe, W. P. 1977. A new class of murine leukemia virus associated with development of spontaneous lymphomas. Proc. Natl. Acad. Sci. U S A 74:789–792.PubMedCrossRefGoogle Scholar
  101. Hartley, J. W., Yetter, R. A., and Morse, H. C. 1983. A mouse gene on chromosome 5 that restricts infectivity of mink cell focus-forming recombinant murine leukemia viruses. J. Exp. Med. 158:16–24.PubMedCrossRefGoogle Scholar
  102. Hayward, W. S., Neel, B. G., and Astrin, S. M. 1981. Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290:475–480.PubMedCrossRefGoogle Scholar
  103. Hecht, S. J., Stedman, K. E., Carlson, J. O., and DeMartini, J. C. 1996. Distribution of endogenous type B and type D sheep retrovirus sequences in ungulates and other mammals. Proc. Natl. Acad. Sci. U S A. 93:3297–3302.PubMedCrossRefGoogle Scholar
  104. Herbst, H., Sauter, M., and Mueller-Lantzsch, N. 1996. Expression of human endogenous retrovirus K elements in germ cell and trophoblastic tumors. Am. J. Pathol. 149:1727–1735.PubMedGoogle Scholar
  105. Herr, W., and Gilbert, W. 1983. Somatically acquired recombinant murine leukemia proviruses in thymic leukemias of AKR/J mice. J. Virol. 46:70–82.PubMedGoogle Scholar
  106. Herr, W., and Gilbert, W. 1984. Free and integrated recombinant murine leukemia virus DNAs appear in preleukemic thymuses of AKR/J mice. J. Virol. 50:155–162.PubMedGoogle Scholar
  107. Heslin, D. J., Murcia, P., Arnaud, F., Van, D. K., Palmarini, M., and Lenz, J. 2009. A single amino acid substitution in a segment of the CA protein within Gag that has similarity to human immunodeficiency virus type 1 blocks infectivity of a human endogenous retrovirus K provirus in the human genome. J. Virol. 83:1105–1114.PubMedCrossRefGoogle Scholar
  108. Hodes, R. J., Novick, M. B., Palmer, L. D., and Knepper, J. E. 1993. Association of a Vβ2-specific superantigen with a tumorigenic milk-borne mouse mammary tumor virus. J. Immunol. 150:1422–1428.PubMedGoogle Scholar
  109. Hofacre, A., and Fan, H. 2004. Multiple domains of the Jaagsiekte sheep retrovirus envelope protein are required for transformation of rodent fibroblasts. J. Virol. 78:10479–10489.PubMedCrossRefGoogle Scholar
  110. Hofacre, A., Nitta, T., and Fan, H. 2009. Jaagsiekte sheep retrovirus encodes a regulatory factor, Rej, required for synthesis of Gag protein. J. Virol. 83:12483–12498.PubMedCrossRefGoogle Scholar
  111. Hoggan, M. D., O’Neill, R. R., and Kozak, C. A. 1986. Nonecotropic murine leukemia viruses in BALB/c and NFS/N mice: characterization of the BALB/c Bxv-1 provirus and the single NFS endogenous xenotrope. J. Virol. 60:980–986.PubMedGoogle Scholar
  112. Hsiao, F. C., Lin, M., Tai, A., Chen, G., and Huber, B. T. 2006. Cutting edge: Epstein-Barr virus transactivates the HERV-K18 superantigen by docking to the human complement receptor 2 (CD21) on primary B cells. J. Immunol. 177:2056–2060.PubMedGoogle Scholar
  113. Hsu, C. L., Fabritius, C., and Dudley, J. 1988. Mouse mammary tumor virus proviruses in T-cell lymphomas lack a negative regulatory element in the long terminal repeat. J. Virol. 62:4644–4652.PubMedGoogle Scholar
  114. Huda, A., Polavarapu, N., Jordan, I. K., and McDonald, J. F. 2008. Endogenous retroviruses of the chicken genome. Biol. Direct 3:9.PubMedCrossRefGoogle Scholar
  115. Ignjatovic, J., and Bagust, T. J. 1985. Variation in susceptibility to avian sarcoma viruses and expression of endogenous avian leukosis virus antigens in specific pathogen-free chicken lines. J. Gen. Virol. 66:1723–1731.PubMedCrossRefGoogle Scholar
  116. Ikeda, H., Kato, K., Kitani, H., Suzuki, T., Yoshida, T., Inaguma, Y., Yamamoto, N., Suh, J. G., Hyun, B. H., Yamagata, T., Namikawa, T., and Tomita, T. 2001. Virological properties and nucleotide sequences of Cas-E-type endogenous ecotropic murine leukemia viruses in South Asian wild mice, Mus musculus castaneus. J. Virol. 75:5049–5058.PubMedCrossRefGoogle Scholar
  117. Ikeda, H., Laigret, F., Martin, M. A., and Repaske, R. 1985. Characterization of a molecularly cloned retroviral sequence associated with Fv-4 resistance. J. Virol. 55:768–777.PubMedGoogle Scholar
  118. Imai, S., Okumoto, M., Iwai, M., Haga, S., Mori, N., Miyashita, N., Moriwaki, K., Hilgers, J., and Sarkar, N. H. 1994. Distribution of mouse mammary tumor virus in Asian wild mice. J. Virol. 68:3437–3442.PubMedGoogle Scholar
  119. Ishimoto, A., Adachi, A., Sakai, K., Yorifuji, T., and Tsuruta, S. 1981. Rapid emergence of mink cell focus-forming (MCF) virus in various mice infected with NB-tropic friend virus. Virology 113:644–655.PubMedCrossRefGoogle Scholar
  120. Ishimoto, A., Takimoto, M., Adachi, A., Kakuyama, M., Kato, S., Kakimi, K., Fukuoka, K., Ogiu T., and Matsuyama, M. 1987. Sequences responsible for erythroid and lymphoid leukemia in the long terminal repeats of Friend-mink cell focus-forming and Moloney murine leukemia viruses. J. Virol. 61:1861–1866.PubMedGoogle Scholar
  121. Jahid, S., Bundy, L. M., Granger, S. W., and Fan, H. 2006. Chimeras between SRS and Moloney murine leukemia viruses reveal novel determinants in disease specificity and MCF recombinant formation. Virology 351:7–17.PubMedCrossRefGoogle Scholar
  122. Jenkins, N. A., Copeland, N. G., Taylor, B. A., and Lee, B. K. 1982. Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus. J. Virol. 43:26–36.PubMedGoogle Scholar
  123. Jern, P., Sperber, G. O., and Blomberg, J. 2005. Use of endogenous retroviral sequences (ERVs) and structural markers for retroviral phylogenetic inference and taxonomy. Retrovirology 2:50.PubMedCrossRefGoogle Scholar
  124. Jolicoeur, P., Rosenberg, N., Cotellessa, A., and Baltimore, D. 1978. Leukemogenicity of clonal isolates of murine leukemia viruses. J. Natl. Cancer Inst. 60:1473–1476.PubMedGoogle Scholar
  125. Jung, Y. T., Lyu, M. S., Buckler-White, A., and Kozak, C. A. 2002. Characterization of a polytropic murine leukemia virus proviral sequence associated with the virus resistance gene Rmcf of DBA/2 mice. J. Virol. 76:8218–8224.PubMedCrossRefGoogle Scholar
  126. Jung, Y. T., Wu, T., and Kozak, C. A. 2003. Characterization of recombinant nonecotropic murine leukemia viruses from the wild mouse species Mus spretus. J. Virol. 77:12773–12781.PubMedCrossRefGoogle Scholar
  127. Kang, J. J., Schwegel, T., and Knepper, J. E. 1993. Sequence similarity between the long terminal repeat coding regions of mammary-tumorigenic BALB/cV and renal-tumorigenic C3H-K strains of mouse mammary tumor virus. Virology 196:303–308.PubMedCrossRefGoogle Scholar
  128. Katz, E., Lareef, M. H., Rassa, J. C., Grande, S. M., King, L. B., Russo, J., Ross, S. R., and Monroe, J. G. 2005. MMTV Env encodes an ITAM responsible for transformation of mammary epithelial cells in three-dimensional culture. J. Exp. Med. 201:431–439.PubMedCrossRefGoogle Scholar
  129. Kim, Y. J., Park, S. I., Park, S. J., Kim, H. H., Jung, Y. W., Kwon, J. T., Jang, B. G., Kim, H. K., and Cho, K. O. 2008. Molecular analysis of endogenous avian leukosis/sarcoma virus genomes in Korean chicken embryos. J. Vet. Med. Sci. 70:17–23.PubMedCrossRefGoogle Scholar
  130. Kleiman, A., Senyuta, N., Tryakin, A., Sauter, M., Karseladze, A., Tjulandin, S., Gurtsevitch, V., and Mueller-Lantzsch, N. 2004. HERV-K(HML-2) GAG/ENV antibodies as indicator for therapy effect in patients with germ cell tumors. Int. J. Cancer 110:459–461.PubMedCrossRefGoogle Scholar
  131. Knepper, J. E., Medina, D., and Butel, J. S. 1987. Activation of endogenous MMTV proviruses in murine mammary cancer induced by chemical carcinogen. Int. J. Cancer 40:414–422.PubMedCrossRefGoogle Scholar
  132. Kozak, C., Peters, G., Pauley, R., Morris, V., Michalides, R., Dudley, J., Green, M., Davisson, M., Prakash, O., and Vaidya, A. 1987. A standardized nomenclature for endogenous mouse mammary tumor viruses. J. Virol. 61:1651–1654.PubMedGoogle Scholar
  133. Kozak, C. A. 1985a. Analysis of wild-derived mice for Fv-1 and Fv-2 murine leukemia virus restriction loci: a novel wild mouse Fv-1 allele responsible for lack of host range restriction. J. Virol. 55:281–285.PubMedGoogle Scholar
  134. Kozak, C. A. 1985b. Retroviruses as chromosomal genes in the mouse. Adv. Cancer Res. 44:295–336.PubMedCrossRefGoogle Scholar
  135. Kozak, C. A., and Chakraborti, A. 1996. Single amino acid changes in the murine leukemia virus capsid protein gene define the target of Fv1 resistance. Virology 225:300–305.PubMedCrossRefGoogle Scholar
  136. Kozak, C. A., Hartley, J. W., and Morse, H. C. 1984. Laboratory and wild-derived mice with multiple loci for production of xenotropic murine leukemia virus. J. Virol. 51:77–80.PubMedGoogle Scholar
  137. Kozak, C. A., and O’Neill, R. R. 1987. Diverse wild mouse origins of xenotropic, mink cell focus-forming, and two types of ecotropic proviral genes. J. Virol. 61:3082–3088.PubMedGoogle Scholar
  138. Lavignon, M., Walker, J. L., Perryman, S. M., Malik, F. G., Khan, A. S., Theodore, T. S., and Evans, L. H. 1994. Characterization of epitopes defining two major subclasses of polytropic murine leukemia viruses (MuLVs) which are differentially expressed in mice infected with different ecotropic MuLVs. J. Virol. 68:5194–5203.PubMedGoogle Scholar
  139. Lee, W. T., Prakash, O., Klein, D., and Sarkar, N. H. 1987. Structural alterations in the long terminal repeat of an acquired mouse mammary tumor virus provirus in a T-cell leukemia of DBA/2 mice. Virology 159:39–48.PubMedCrossRefGoogle Scholar
  140. Lenz, J., Celander, D., Crowther, R. L., Patarca, R., Perkins, D. W., and Haseltine, W. A. 1984. Determination of the leukaemogenicity of a murine retrovirus by sequences within the long terminal repeat. Nature 308:467–470.PubMedCrossRefGoogle Scholar
  141. Levy, L. S. 2008. Advances in understanding molecular determinants in FeLV pathology. Vet. Immunol. Immunopathol. 123:14–22.PubMedCrossRefGoogle Scholar
  142. Li, J. P., and Baltimore, D. 1991. Mechanism of leukemogenesis induced by mink cell focus-forming murine leukemia viruses. J. Virol. 65:2408–2414.PubMedGoogle Scholar
  143. Li, J. P., D’Andrea, A. D., Lodish, H. F., and Baltimore, D. 1990. Activation of cell growth by binding of Friend spleen focus-forming virus gp55 glycoprotein to the erythropoietin receptor. Nature 343:762–764.PubMedCrossRefGoogle Scholar
  144. Li, Y., Golemis, E., Hartley, J. W., and Hopkins, N. 1987. Disease specificity of nondefective Friend and Moloney murine leukemia viruses is controlled by a small number of nucleotides. J. Virol. 61:693–700.PubMedGoogle Scholar
  145. Lilly, F. 1967. Susceptibility to two strains of Friend leukemia virus in mice. Science 155:461–462.PubMedCrossRefGoogle Scholar
  146. Liu, S. L., Duh, F. M., Lerman, M. I., and Miller, A. D. 2003a. Role of virus receptor Hyal2 in oncogenic transformation of rodent fibroblasts by sheep betaretrovirus env proteins. J. Virol. 77:2850–2858.PubMedCrossRefGoogle Scholar
  147. Liu, S. L., Lerman, M. I., and Miller, A. D. 2003b. Putative phosphatidylinositol 3-kinase (PI3K) binding motifs in ovine betaretrovirus Env proteins are not essential for rodent fibroblast transformation and PI3K/Akt activation. J. Virol. 77:7924–7935.PubMedCrossRefGoogle Scholar
  148. Lombardi, V. C., Ruscetti, F. W., Das, G. J., Pfost, M. A., Hagen, K. S., Peterson, D. L., Ruscetti, S. K., Bagni, R. K., Petrow-Sadowski, C., Gold, B., Dean, M., Silverman, R. H., and Mikovits, J. A. 2009. Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome. Science 326:585–589.PubMedCrossRefGoogle Scholar
  149. Lung, M. L., Hartley, J. W., Rowe, W. P., and Hopkins, N. H. 1983. Large RNase T1-resistant oligonucleotides encoding p15E and the U3 region of the long terminal repeat distinguish two biological classes of mink cell focus-forming type C viruses of inbred mice. J. Virol. 45:275–290.PubMedGoogle Scholar
  150. Lupiani, B., Hunt, H., Silva, R., and Fadly, A. 2000. Identification and characterization of recombinant subgroup J avian leukosis viruses (ALV) expressing subgroup A ALV envelope. Virology 276:37–43.PubMedCrossRefGoogle Scholar
  151. Maeda, N., Fu, W., Ortin, A., De las, H. M., and Fan, H. 2005. Roles of the Ras-MEK-mitogen-activated protein kinase and phosphatidylinositol 3-kinase-Akt-mTOR pathways in Jaagsiekte sheep retrovirus-induced transformation of rodent fibroblast and epithelial cell lines. J. Virol. 79:4440–4450.PubMedCrossRefGoogle Scholar
  152. Maeda, N., Palmarini, M., Murgia, C., and Fan, H. 2001. Direct transformation of rodent fibroblasts by jaagsiekte sheep retrovirus DNA. Proc. Natl. Acad. Sci. U S A 98:4449–4454.PubMedCrossRefGoogle Scholar
  153. Mangeney, M., Pothlichet, J., Renard, M., Ducos, B., and Heidmann, T. 2005. Endogenous retrovirus expression is required for murine melanoma tumor growth in vivo. Cancer Res. 65:2588–2591.PubMedCrossRefGoogle Scholar
  154. Mant, C., Gillett, C., D’Arrigo, C., and Cason, J. 2004. Human murine mammary tumour virus-like agents are genetically distinct from endogenous retroviruses and are not detectable in breast cancer cell lines or biopsies. Virology 318:393–404.PubMedCrossRefGoogle Scholar
  155. Marchetti, A., Svec, J., Hlavay, E., Veselovska, Z., Castagna, M., and Squartini, F. 1988. Morphologic and antigenic properties of mouse mammary tumor virus produced in a hormone-responsive fashion by C57Bl/10 mammary tumors of non-viral origin. Tumori 74:261–267.PubMedGoogle Scholar
  156. Marin, M., Tailor, C. S., Nouri, A., Kozak, S. L., and Kabat, D. 1999. Polymorphisms of the cell surface receptor control mouse susceptibilities to xenotropic and polytropic leukemia viruses. J. Virol. 73:9362–9368.PubMedGoogle Scholar
  157. Martin-Hernandez, J., Balle, S. A., and Pedersen, F. S. 2006. Non-identical patterns of proviral insertions around host transcription units in lymphomas induced by different strains of murine leukemia virus. Virology 353:193–199.PubMedCrossRefGoogle Scholar
  158. Mayer, J., Ehlhardt, S., Seifert, M., Sauter, M., Muller-Lantzsch, N., Mehraein, Y., Zang, K. D., and Meese, E. 2004. Human endogenous retrovirus HERV-K(HML-2) proviruses with Rec protein coding capacity and transcriptional activity. Virology 322:190–198.PubMedCrossRefGoogle Scholar
  159. McDougall, A. S., Terry, A., Tzavaras, T., Cheney, C., Rojko, J., and Neil, J. C. 1994. Defective endogenous proviruses are expressed in feline lymphoid cells: evidence for a role in natural resistance to subgroup B feline leukemia viruses. J. Virol. 68:2151–2160.PubMedGoogle Scholar
  160. McGee-Estrada, K., and Fan, H. 2006. In vivo and in vitro analysis of factor binding sites in Jaagsiekte sheep retrovirus long terminal repeat enhancer sequences: roles of HNF-3, NF-I, and C/EBP for activity in lung epithelial cells. J. Virol. 80:332–341.PubMedCrossRefGoogle Scholar
  161. McGee-Estrada, K., Palmarini, M., and Fan, H. 2002. HNF-3beta is a critical factor for the expression of the Jaagsiekte sheep retrovirus long terminal repeat in type II pneumocytes but not in Clara cells. Virology 292:87–97.PubMedCrossRefGoogle Scholar
  162. Mendoza, R., Anderson, M. M., and Overbaugh, J. 2006. A putative thiamine transport protein is a receptor for feline leukemia virus subgroup A. J. Virol. 80:3378–3385.PubMedCrossRefGoogle Scholar
  163. Mertz, J. A., Kobayashi, R., and Dudley, J. P. 2007. ALY is a common coactivator of RUNX1 and c-Myb on the type B leukemogenic virus enhancer. J. Virol. 81:3503–3513.PubMedCrossRefGoogle Scholar
  164. Mertz, J. A., Mustafa, F., Meyers, S., and Dudley, J. P. 2001. Type B leukemogenic virus has a T-cell-specific enhancer that binds AML-1. J. Virol. 75:2174–2184.PubMedCrossRefGoogle Scholar
  165. Michalides, R., van Nie, R., Nusse, R., Hynes, N. E., and Groner, B. 1981. Mammary tumor induction loci in GR and DBAf mice contain one provirus of the mouse mammary tumor virus. Cell 23:165–173.PubMedCrossRefGoogle Scholar
  166. Michalides, R., and Wagenaar, E. 1986. Site-specific rearrangements in the long terminal repeat of extra mouse mammary tumor proviruses in murine T-cell leukemias. Virology 154:76–84.PubMedCrossRefGoogle Scholar
  167. Michalides, R., Wagenaar, E., Hilkens, J., Hilgers, J., Groner, B., and Hynes, N. E. 1982. Acquisition of proviral DNA of mouse mammary tumor virus in thymic leukemia cells from GR mice. J. Virol. 43:819–829.PubMedGoogle Scholar
  168. Michalides, R., Wagenaar, E., and Weijers, P. 1985. Rearrangements in the long terminal repeat of extra mouse mammary tumor proviruses in T-cell leukemias of mouse strain GR result in a novel enhancer-like structure. Mol. Cell. Biol. 5:823–830.PubMedGoogle Scholar
  169. Moore, M. D., Fu, W., Nikolaitchik, O., Chen, J., Ptak, R. G., and Hu, W. S. 2007. Dimer initiation signal of human immunodeficiency virus type 1: its role in partner selection during RNA copackaging and its effects on recombination. J. Virol. 81:4002–4011.PubMedCrossRefGoogle Scholar
  170. Morris, D. W., Young, L. J., Gardner, M. B., and Cardiff, R. D. 1986. Transfer, by selective breeding, of the pathogenic Mtv-2 endogenous provirus from the GR strain to a wild mouse line free of endogenous and exogenous mouse mammary tumor virus. J. Virol. 58:247–252.PubMedGoogle Scholar
  171. Moyes, D., Griffiths, D. J., and Venables, P. J. 2007. Insertional polymorphisms: a new lease of life for endogenous retroviruses in human disease. Trends Genet. 23:326–333.PubMedCrossRefGoogle Scholar
  172. Mucenski, M. L., Bedigian, H. G., Shull, M. M., Copeland, N. G., and Jenkins, N. A. 1988. Comparative molecular genetic analysis of lymphomas from six inbred mouse strains. J. Virol. 62:839–846.PubMedGoogle Scholar
  173. Mueller, R. E., Baggio, L., Kozak, C. A., and Ball, J. K. 1992. A common integration locus in type B retrovirus-induced thymic lymphomas. Virology 191:628–637.PubMedCrossRefGoogle Scholar
  174. Mukhopadhyay, R., Medina, D., and Butel, J. S. 1995. Expression of the mouse mammary tumor virus long terminal repeat open reading frame promotes tumorigenic potential of hyperplastic mouse mammary epithelial cells. Virology 211:74–93.PubMedCrossRefGoogle Scholar
  175. Mura, M., Murcia, P., Caporale, M., Spencer, T. E., Nagashima, K., Rein, A., and Palmarini, M. 2004. Late viral interference induced by transdominant Gag of an endogenous retrovirus. Proc. Natl. Acad. Sci. U S A 101:11117–11122.PubMedCrossRefGoogle Scholar
  176. Muradrasoli, S., Forsman, A., Hu, L., Blikstad, V., and Blomberg, J. 2006. Development of real-time PCRs for detection and quantitation of human MMTV-like (HML) sequences HML expression in human tissues. J. Virol. Methods 136:83–92.PubMedCrossRefGoogle Scholar
  177. Murcia, P. R., Arnaud, F., and Palmarini, M. 2007. The transdominant endogenous retrovirus enJS56A1 associates with and blocks intracellular trafficking of Jaagsiekte sheep retrovirus Gag. J. Virol. 81:1762–1772.PubMedCrossRefGoogle Scholar
  178. Mustafa, F., Bhadra, S., Johnston, D., Lozano, M., and Dudley, J. P. 2003. The type B leukemogenic virus truncated superantigen is dispensable for T-cell lymphomagenesis. J. Virol. 77:3866–3870.PubMedCrossRefGoogle Scholar
  179. Nanua, S., and Yoshimura, F. K. 2004. Differential cell killing by lymphomagenic murine leukemia viruses occurs independently of p53 activation and mitochondrial damage. J. Virol. 78:5088–5096.PubMedCrossRefGoogle Scholar
  180. Neel, B. G., Hayward, W. S., Robinson, H. L., Fang, J., and Astrin, S. M. 1981. Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: oncogenesis by promoter insertion. Cell 23:323–334.PubMedCrossRefGoogle Scholar
  181. Nishigaki, K., Hanson, C., Jelacic, T., Thompson, D., and Ruscetti, S. 2005. Friend spleen focus-forming virus transforms rodent fibroblasts in cooperation with a short form of the receptor tyrosine kinase Stk. Proc. Natl. Acad. Sci. U S A 102:15488–15493.PubMedCrossRefGoogle Scholar
  182. Nusse, R., Brown, A., Papkoff, J., Scambler, P., Shackleford, G., McMahon, A., and Moon, R., Varmus H. 1991. A new nomenclature for int-1 and related genes: the Wnt gene family [letter]. Cell 64:231.PubMedCrossRefGoogle Scholar
  183. Nusse, R., van der Ploeg, L., van Duijn, L., Michalides, R., and Hilgers, J. 1979. Impaired maturation of mouse mammary tumor virus precursor polypeptides in lymphoid leukemia cells, producing intracytoplasmic A particles and no extracellular B-type virions. J. Virol. 32:251–258.PubMedGoogle Scholar
  184. Nusse, R., van Ooyen, A., Cox, D., Fung, Y. K., and Varmus, H. 1984. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307:131–136.PubMedCrossRefGoogle Scholar
  185. O’Neill, R. R., Hartley, J. W., Repaske, R., and Kozak, C. A. 1987. Amphotropic proviral envelope sequences are absent from the Mus germ line. J. Virol. 61:2225–2231.PubMedGoogle Scholar
  186. Ohno, T., Mesa-Tejada, R., Keydar, I., Ramanarayanan, M., Bausch, J., and Spiegelman, S. 1979. Human breast carcinoma antigen is immunologically related to the polypeptide of the group-specific glycoprotein of mouse mammary tumor virus. Proc. Natl. Acad. Sci. U S A 76:2460–2464.PubMedCrossRefGoogle Scholar
  187. Ortin, A., Minguijon, E., Dewar, P., Garcia, M., Ferrer, L. M., Palmarini, M., Gonzalez, L., Sharp, J. M., and De las, H. M. 1998. Lack of a specific immune response against a recombinant capsid protein of Jaagsiekte sheep retrovirus in sheep and goats naturally affected by enzootic nasal tumour or sheep pulmonary adenomatosis. Vet. Immunol. Immunopathol. 61:229–237.PubMedCrossRefGoogle Scholar
  188. Palmarini, M., Cousens, C., Dalziel, R. G., Bai, J., Stedman, K., DeMartini, J. C., and Sharp, J. M. 1996a. The exogenous form of Jaagsiekte retrovirus is specifically associated with a contagious lung cancer of sheep. J. Virol. 70:1618–1623.PubMedGoogle Scholar
  189. Palmarini, M., Datta, S., Omid, R., Murgia, C., and Fan, H. 2000a. The long terminal repeat of Jaagsiekte sheep retrovirus is preferentially active in differentiated epithelial cells of the lungs. J. Virol. 74:5776–5787.PubMedCrossRefGoogle Scholar
  190. Palmarini, M., Dewar, P., De las, H. M., Inglis, N. F., Dalziel, R. G., and Sharp, J. M. 1995. Epithelial tumour cells in the lungs of sheep with pulmonary adenomatosis are major sites of replication for Jaagsiekte retrovirus. J. Gen. Virol. 76:2731–2737.PubMedCrossRefGoogle Scholar
  191. Palmarini, M., Gray, C. A., Carpenter, K., Fan, H., Bazer, F. W., and Spencer, T. E. 2001a. Expression of endogenous betaretroviruses in the ovine uterus: effects of neonatal age, estrous cycle, pregnancy, and progesterone. J. Virol. 75:11319–11327.PubMedCrossRefGoogle Scholar
  192. Palmarini, M., Hallwirth, C., York, D., Murgia, C., de, O. T., Spencer, T., and Fan, H. 2000b. Molecular cloning and functional analysis of three type D endogenous retroviruses of sheep reveal a different cell tropism from that of the highly related exogenous jaagsiekte sheep retrovirus. J. Virol. 74:8065–8076.PubMedCrossRefGoogle Scholar
  193. Palmarini, M., Holland, M. J., Cousens, C., Dalziel, R. G., and Sharp, J. M. 1996b. Jaagsiekte retrovirus establishes a disseminated infection of the lymphoid tissues of sheep affected by pulmonary adenomatosis. J. Gen. Virol. 77:2991–2998.PubMedCrossRefGoogle Scholar
  194. Palmarini, M., Maeda, N., Murgia, C., De-Fraja, C., Hofacre, A., and Fan, H. 2001b. A phosphatidylinositol 3-kinase docking site in the cytoplasmic tail of the Jaagsiekte sheep retrovirus transmembrane protein is essential for envelope-induced transformation of NIH 3T3 cells. J. Virol. 75:11002–11009.PubMedCrossRefGoogle Scholar
  195. Palmarini, M., Mura, M., and Spencer, T. E. 2004. Endogenous betaretroviruses of sheep: teaching new lessons in retroviral interference and adaptation. J. Gen. Virol. 85:1–13.PubMedCrossRefGoogle Scholar
  196. Palmarini, M., Sharp, J. M., De las, H. M., and Fan, H. 1999. Jaagsiekte sheep retrovirus is necessary and sufficient to induce a contagious lung cancer in sheep. J. Virol. 73:6964–6972.PubMedGoogle Scholar
  197. Pandey, R., Ghosh, A. K., Kumar, D. V., Bachman, B. A., Shibata, D., and Roy-Burman, P. 1991. Recombination between feline leukemia virus subgroup B or C and endogenous env elements alters the in vitro biological activities of the viruses. J. Virol. 65:6495–6508.PubMedGoogle Scholar
  198. Payne, L. N. 1998. Retrovirus-induced disease in poultry. Poult. Sci. 77:1204–1212.PubMedGoogle Scholar
  199. Phipps, A. J., Hayes, K. A., Al-dubaib, M., Roy-Burman, P., and Mathes, L. E. 2000. Inhibition of feline leukemia virus subgroup A infection by coinoculation with subgroup B. Virology 277:40–47.PubMedCrossRefGoogle Scholar
  200. Poliquin, L., Bergeron, D., Fortier, J. L., Paquette, Y., Bergeron, R., and Rassart, E. 1992. Determinants of thymotropism in Kaplan radiation leukemia virus and nucleotide sequence of its envelope region. J. Virol. 66:5141–5146.PubMedGoogle Scholar
  201. Pontius, J. U., Mullikin, J. C., Smith, D. R., Lindblad-Toh, K., Gnerre, S., Clamp, M., Chang, J., Stephens, R., Neelam, B., Volfovsky, N., Schaffer, A. A., Agarwala, R., Narfstrom, K., Murphy, W. J., Giger, U., Roca, A. L., Antunes, A., Menotti-Raymond, M., Yuhki, N., Pecon-Slattery, J., Johnson, W. E., Bourque, G., Tesler, G., and O’Brien, S. J. 2007. Initial sequence and comparative analysis of the cat genome. Genome Res. 17:1675–1689.PubMedCrossRefGoogle Scholar
  202. Pothlichet, J., Heidmann, T., and Mangeney, M. 2006. A recombinant endogenous retrovirus amplified in a mouse neuroblastoma is involved in tumor growth in vivo. Int. J. Cancer 119:815–822.PubMedCrossRefGoogle Scholar
  203. Quint, W., Boelens, W., van Wezenbeek, P., Cuypers, T., Maandag, E. R., Selten, G., and Berns, A. 1984. Generation of AKR mink cell focus-forming viruses: a conserved single-copy xenotrope-like provirus provides recombinant long terminal repeat sequences. J. Virol. 50:432–438.PubMedGoogle Scholar
  204. Racevskis, J. 1990. Altered mouse mammary tumor virus transcript synthesis in T-cell lymphoma cells. J. Virol. 64:4043–4050.PubMedGoogle Scholar
  205. Racevskis, J., and Beyer, H. 1989. Amplification of mouse mammary tumor virus genomes in non-mammary tumor cells. J. Virol. 63:456–459.PubMedGoogle Scholar
  206. Rai, S. K., Duh, F. M., Vigdorovich, V., nilkovitch-Miagkova, A., Lerman, M. I., and Miller, A. D. 2001. Candidate tumor suppressor HYAL2 is a glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor for jaagsiekte sheep retrovirus, the envelope protein of which mediates oncogenic transformation. Proc. Natl. Acad. Sci. U S A 98:4443–4448.PubMedCrossRefGoogle Scholar
  207. Rajan, L., Broussard, D., Lozano, M., Lee, C. G., Kozak, C. A., and Dudley, J. P. 2000. The c-myc locus is a common integration site in type B retrovirus-induced T-cell lymphomas. J. Virol. 74:2466–2471.PubMedCrossRefGoogle Scholar
  208. Resnick-Roguel, N., Eldor, A., Burstein, H., Hy-Am, E., Vlodavsky, I., Panet, A., Blajchman, M. A., and Kotler, M. 1990. Envelope glycoprotein of avian hemangioma retrovirus induces a thrombogenic surface on human and bovine endothelial cells. J. Virol. 64:4029–4032.PubMedGoogle Scholar
  209. Risser, R., Horowitz, J. M., and McCubrey, J. 1983. Endogenous mouse leukemia viruses. Annu. Rev. Genet. 17:85–121.PubMedCrossRefGoogle Scholar
  210. Robinson, H. L., Astrin, S. M., Senior, A. M., and Salazar, F. H. 1981. Host Susceptibility to endogenous viruses: defective, glycoprotein-expressing proviruses interfere with infections. J. Virol. 40:745–751.PubMedGoogle Scholar
  211. Robinson, H. L., and Gagnon, G. C. 1986. Patterns of proviral insertion and deletion in avian leukosis virus-induced lymphomas. J Virol. 57:28–36.PubMedGoogle Scholar
  212. Roca, A. L., Pecon-Slattery, J., and O’Brien, S. J. 2004. Genomically intact endogenous feline leukemia viruses of recent origin. J. Virol. 78:4370–4375.PubMedCrossRefGoogle Scholar
  213. Rodenburg, M., Fischer, M., Engelmann, A., Harbers, S. O., Ziegler, M., Lohler, J., and Stocking, C. 2007. Importance of receptor usage, Fli1 activation, and mouse strain for the stem cell specificity of 10A1 murine leukemia virus leukemogenicity. J. Virol. 81:732–742.PubMedCrossRefGoogle Scholar
  214. Rollini, P., Billotte, J., Kolb, E., and Diggelmann, H. 1992. Expression pattern of mouse mammary tumor virus in transgenic mice carrying exogenous proviruses of different origins. J. Virol. 66:4580–4586.PubMedGoogle Scholar
  215. Ross, S. R., Schmidt, J. W., Katz, E., Cappelli, L., Hultine, S., Gimotty, P., and Monroe, J. G. 2006. An immunoreceptor tyrosine activation motif in the mouse mammary tumor virus envelope protein plays a role in virus-induced mammary tumors. J. Virol. 80:9000–9008.PubMedCrossRefGoogle Scholar
  216. Ross, S. R., Schofield, J. J., Farr, C. J., and Bucan, M. 2002. Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus. Proc. Natl. Acad. Sci. U S A 99:12386–12390.PubMedCrossRefGoogle Scholar
  217. Rowe, W. P., and Hartley, J. W. 1983. Genes affecting mink cell focus-inducing (MCF) murine leukemia virus infection and spontaneous lymphoma in AKR F1 hybrids. J. Exp. Med. 158:353–364.PubMedCrossRefGoogle Scholar
  218. Roy-Burman, P. 1995. Endogenous env elements: partners in generation of pathogenic feline leukemia viruses. Virus Genes 11:147–161.PubMedCrossRefGoogle Scholar
  219. Ruscetti, S., Davis, L., Feild, J., and Oliff, A. 1981. Friend murine leukemia virus-induced leukemia is associated with the formation of mink cell focus-inducing viruses and is blocked in mice expressing endogenous mink cell focus-inducing xenotropic viral envelope genes. J. Exp. Med. 154:907–920.PubMedCrossRefGoogle Scholar
  220. Sacco, M. A., Flannery, D. M., Howes, K., and Venugopal, K. 2000. Avian endogenous retrovirus EAV-HP shares regions of identity with avian leukosis virus subgroup J and the avian retrotransposon ART-CH. J. Virol. 74:1296–1306.PubMedCrossRefGoogle Scholar
  221. Sacco, M. A., Howes, K., Smith, L. P., and Nair, V. K. 2004. Assessing the roles of endogenous retrovirus EAV-HP in avian leukosis virus subgroup J emergence and tolerance. J. Virol. 78:10525–10535.PubMedCrossRefGoogle Scholar
  222. Salmons, B., Knedlitschek, G., Kennedy, N., Groner, B., and Ponta, H. 1986. The endogenous mouse mammary tumour virus locus Mtv-8 contains a defective envelope gene. Virus Res. 4:377–389.PubMedCrossRefGoogle Scholar
  223. Sarkar, N. H., Haga, S., Lehner, A. F., Zhao, W., Imai, S., and Moriwaki, K. 1994. Insertional mutation of int protooncogenes in the mammary tumors of a new strain of mice derived from the wild in China: normal- and tumor-tissue-specific expression of int-3 transcripts. Virology 203:52–62.PubMedCrossRefGoogle Scholar
  224. Scherer, M. T., Ignatowicz, L., Pullen, A., Kappler, J., and Marrack, P. 1995. The use of mammary tumor virus (Mtv)-negative and single-Mtv mice to evaluate the effects of endogenous viral superantigens on the T cell repertoire. J. Exp. Med. 182:1493–1504.PubMedCrossRefGoogle Scholar
  225. Schlaberg, R., Choe, D. J., Brown, K. R., Thaker, H. M., and Singh, I. R. 2009. XMRV is present in malignant prostatic epithelium and is associated with prostate cancer, especially high-grade tumors. Proc. Natl. Acad. Sci. U S A 106:16351–16356.PubMedCrossRefGoogle Scholar
  226. Sela-Donenfeld, D., Korner, M., Pick, M., Eldor, A., and Panet, A. 1996. Programmed endothelial cell death induced by an avian hemangioma retrovirus is density dependent. Virology 223:233–237.PubMedCrossRefGoogle Scholar
  227. Sen, N., Simmons, W. J., Thomas, R. M., Erianne, G., Zhang, D. J., Jaeggli, N. S., Huang, C., Xiong, X., Tsiagbe, V. K., Ponzio, N. M., and Thorbecke, G. J. 2001. META-controlled env-initiated transcripts encoding superantigens of murine Mtv29 and Mtv7 and their possible role in B cell lymphomagenesis. J. Immunol. 166:5422–5429.PubMedGoogle Scholar
  228. Serafino, A., Balestrieri, E., Pierimarchi, P., Matteucci, C., Moroni, G., Oricchio, E., Rasi, G., Mastino, A., Spadafora, C., Garaci, E., and Vallebona, P. S. 2009. The activation of human endogenous retrovirus K (HERV-K) is implicated in melanoma cell malignant transformation. Exp. Cell Res. 315:849–862.PubMedCrossRefGoogle Scholar
  229. Sheets, R. L., Pandey, R., Jen, W. C., and Roy-Burman, P. 1993. Recombinant feline leukemia virus genes detected in naturally occurring feline lymphosarcomas. J. Virol. 67:3118–3125.PubMedGoogle Scholar
  230. Sheets, R. L., Pandey, R., Klement, V., Grant, C. K., and Roy-Burman, P. 1992. Biologically selected recombinants between feline leukemia virus (FeLV) subgroup A and an endogenous FeLV element. Virology 190:849–855.PubMedCrossRefGoogle Scholar
  231. Shin, M. S., Fredrickson, T. N., Hartley, J. W., Suzuki, T., Akagi, K., and Morse, H. C., III. 2004. High-throughput retroviral tagging for identification of genes involved in initiation and progression of mouse splenic marginal zone lymphomas. Cancer Res. 64:4419–4427.PubMedCrossRefGoogle Scholar
  232. Sicat, J., Sutkowski, N., and Huber, B. T. 2005. Expression of human endogenous retrovirus HERV-K18 superantigen is elevated in juvenile rheumatoid arthritis. J. Rheumatol. 32:1821–1831.PubMedGoogle Scholar
  233. Silver, J. E., and Fredrickson, T. N. 1983. A new gene that controls the type of leukemia induced by Friend murine leukemia virus. J. Exp. Med. 158:493–505.PubMedCrossRefGoogle Scholar
  234. Sorensen, A. B., Lund, A. H., Kunder, S., Quintanilla-Martinez, L., Schmidt, J., Wang, B., Wabl, M., and Pedersen, F. S. 2007a. Impairment of alternative splice sites defining a novel gammaretroviral exon within gag modifies the oncogenic properties of Akv murine leukemia virus. Retrovirology 4:46.PubMedCrossRefGoogle Scholar
  235. Sorensen, K. D., Kunder, S., Quintanilla-Martinez, L., Sorensen, J., Schmidt, J., and Pedersen, F. S. 2007b. Enhancer mutations of Akv murine leukemia virus inhibit the induction of mature B-cell lymphomas and shift disease specificity towards the more differentiated plasma cell stage. Virology 362:179–191.PubMedCrossRefGoogle Scholar
  236. Speck, N. A., Renjifo, B., Golemis, E., Fredrickson, T. N., Hartley, J. W., and Hopkins, N. 1990. Mutation of the core or adjacent LVb elements of the Moloney murine leukemia virus enhancer alters disease specificity. Genes Dev. 4:233–242.PubMedCrossRefGoogle Scholar
  237. Spencer, T. E., Mura, M., Gray, C. A., Griebel, P. J., and Palmarini, M. 2003. Receptor usage and fetal expression of ovine endogenous betaretroviruses: implications for coevolution of endogenous and exogenous retroviruses. J. Virol. 77:749–753.PubMedCrossRefGoogle Scholar
  238. Stehelin, D., Varmus, H. E., Bishop, J. M., and Vogt, P. K. 1976. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170–173.PubMedCrossRefGoogle Scholar
  239. Stevens, A., Bock, M., Ellis, S., LeTissier, P., Bishop, K. N., Yap, M. W., Taylor, W., and Stoye, J. P. 2004. Retroviral capsid determinants of Fv1 NB and NR tropism. J. Virol. 78:9592–9598.PubMedCrossRefGoogle Scholar
  240. Stocking, C., and Kozak, C. A. 2008. Murine endogenous retroviruses. Cell Mol. Life Sci. 65:3383–3398.Google Scholar
  241. Stoye, J. P., Moroni, C., and Coffin, J. M. 1991. Virological events leading to spontaneous AKR thymomas. J. Virol. 65:1273–1285.PubMedGoogle Scholar
  242. Summers, C., Dewar, P., van der, M. R., Cousens, C., Salvatori, D., Sharp, J. M., Griffiths, D. J., and Norval, M. 2006. Jaagsiekte sheep retrovirus-specific immune responses induced by vaccination: a comparison of immunisation strategies. Vaccine 24:1821–1829.PubMedCrossRefGoogle Scholar
  243. Suzuki, T., Shen, H., Akagi, K., Morse, H. C., Malley, J. D., Naiman, D. Q., Jenkins, N. A., and Copeland, N. G. 2002. New genes involved in cancer identified by retroviral tagging. Nat. Genet. 32:166–174.PubMedCrossRefGoogle Scholar
  244. Svec, J. 1985. Proviral unit II of endogenous mouse mammary tumour virus is selectively amplified and expressed in C57B1/10 mammary tumours induced by non-viral carcinogens. J. Cancer Res. Clin. Oncol. 110:25–34.PubMedCrossRefGoogle Scholar
  245. Sveda, M. M., and Soeiro, R. 1976. Host restriction of Friend leukemia virus: synthesis and integration of the provirus. Proc. Natl. Acad. Sci. U S A 73:2356–2360.PubMedCrossRefGoogle Scholar
  246. Szabo, C., Kim, Y. K., and Mark, W. H. 1993. The endogenous ecotropic murine retroviruses Emv-16 and Emv-17 are both capable of producing new proviral insertions in the mouse genome. J. Virol. 67:5704–5708.PubMedGoogle Scholar
  247. Szabo, S., Haislip, A. M., and Garry, R. F. 2005. Of mice, cats, and men: is human breast cancer a zoonosis? Microsc. Res. Tech. 68:197–208.PubMedCrossRefGoogle Scholar
  248. Tailor, C. S., Lavillette, D., Marin, M., and Kabat, D. 2003. Cell surface receptors for gammaretroviruses. Curr. Top. Microbiol. Immunol. 281:29–106.PubMedCrossRefGoogle Scholar
  249. Tarlinton, R. E., Meers, J., and Young, P. R. 2006. Retroviral invasion of the koala genome. Nature 442:79–81.PubMedCrossRefGoogle Scholar
  250. Taylor, G. M., Gao, Y., and Sanders, D. A. 2001. Fv-4: identification of the defect in Env and the mechanism of resistance to ecotropic murine leukemia virus. J. Virol. 75:11244–11248.PubMedCrossRefGoogle Scholar
  251. Theodorou, V., Kimm, M. A., Boer, M., Wessels, L., Theelen, W., Jonkers, J., and Hilkens, J. 2007. MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer. Nat. Genet. 39:759–769.PubMedCrossRefGoogle Scholar
  252. Theunissen, H. J., Paardekooper, M., Maduro, L. J., Michalides, R. J., and Nusse, R. 1989. Phorbol ester-inducible T-cell-specific expression of variant mouse mammary tumor virus long terminal repeats. J. Virol. 63:3466–3471.PubMedGoogle Scholar
  253. Thomas, C. Y., Khiroya, R., Schwartz, R. S., and Coffin, J. M. 1984. Role of recombinant ecotropic and polytropic viruses in the development of spontaneous thymic lymphomas in HRS/J mice. J. Virol. 50:397–407.PubMedGoogle Scholar
  254. Thomas, R. M., Haleem, K., Siddique, A. B., Simmons, W. J., Sen, N., Zhang, D. J., and Tsiagbe, V. K. 2003. Regulation of mouse mammary tumor virus env transcriptional activator initiated mammary tumor virus superantigen transcripts in lymphomas of SJL/J mice: role of Ikaros, demethylation, and chromatin structural change in the transcriptional activation of mammary tumor virus superantigen. J. Immunol. 170:218–227.PubMedGoogle Scholar
  255. Tomlins, S. A., Laxman, B., Dhanasekaran, S. M., Helgeson, B. E., Cao, X., Morris, D. S., Menon, A., Jing, X., Cao, Q., Han, B., Yu, J., Wang, L., Montie, J. E., Rubin, M. A., Pienta, K. J., Roulston, D., Shah, R. B., Varambally, S., Mehra, R., and Chinnaiyan, A. M. 2007. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448:595–599.PubMedCrossRefGoogle Scholar
  256. Tomonari, K., Fairchild, S., and Rosenwasser, O. A. 1993. Influence of viral superantigens on V β- and V α-specific positive and negative selection. Immunol. Rev. 131:131–168.PubMedCrossRefGoogle Scholar
  257. Tsiagbe, V. K., Yoshimoto, T., Asakawa, J., Cho, S. Y., Meruelo, D., and Thorbecke, G. J. 1993. Linkage of superantigen-like stimulation of syngeneic T cells in a mouse model of follicular center B cell lymphoma to transcription of endogenous mammary tumor virus. EMBO J. 12:2313–2320.PubMedGoogle Scholar
  258. Tumas, K. M., Poszgay, J. M., Avidan, N., Ksiazek, S. J., Overmoyer, B., Blank, K. J., and Prystowsky, M. B. 1993. Loss of antigenic epitopes as the result of env gene recombination in retrovirus-induced leukemia in immunocompetent mice. Virology 192:587–595.PubMedCrossRefGoogle Scholar
  259. Urisman, A., Molinaro, R. J., Fischer, N., Plummer, S. J., Casey, G., Klein, E. A., Malathi, K., Magi-Galluzzi, C., Tubbs, R. R., Ganem, D., Silverman, R. H., and DeRisi, J. L. 2006. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog. 2:e25.PubMedCrossRefGoogle Scholar
  260. Vaage, J., Smith, G. H., Asch, B. B., and Teramoto, Y. 1986. Mammary tumorigenesis and tumor morphology in four C3H sublines with or without exogenous mammary tumor virus. Cancer Res. 46:2096–2100.PubMedGoogle Scholar
  261. Varela, M., Spencer, T. E., Palmarini, M., and Arnaud, F. 2009. Friendly viruses: the special relationship between endogenous retroviruses and their host. Ann. N. Y. Acad. Sci. 1178:157–172.PubMedCrossRefGoogle Scholar
  262. Velupillai, P., Yoshizawa, I., Dey, D. C., Nahill, S. R., Carroll, J. P., Bronson, R. T., and Benjamin, T. L. 1999. Wild-derived inbred mice have a novel basis of susceptibility to polyomavirus-induced tumors. J. Virol. 73:10079–10085.PubMedGoogle Scholar
  263. Voisin, V., Barat, C., Hoang, T., and Rassart, E. 2006. Novel insights into the pathogenesis of the Graffi murine leukemia retrovirus. J. Virol. 80:4026–4037.PubMedCrossRefGoogle Scholar
  264. Wang, Y., Holland, J. F., Bleiweiss, I. J., Melana, S., Liu, X., Pelisson, I., Cantarella, A., Stellrecht, K., Mani, S., and Pogo, B. G. 1995. Detection of mammary tumor virus env gene-like sequences in human breast cancer. Cancer Res. 55:5173–5179.PubMedGoogle Scholar
  265. Warren, W., Lawley, P. D., Gardner, E., Harris, G., Ball, J. K., and Cooper, C. S. 1987. Induction of thymomas by N-methyl-N-nitrosourea in AKR mice: interaction between the chemical carcinogen and endogenous murine leukaemia viruses. Carcinogenesis 8:163–172.PubMedCrossRefGoogle Scholar
  266. Weiss, R. A. 2006. The discovery of endogenous retroviruses. Retrovirology 3:67.PubMedCrossRefGoogle Scholar
  267. Wellinger, R. J., Garcia, M., Vessaz, A., and Diggelmann, H. 1986. Exogenous mouse mammary tumor virus proviral DNA isolated from a kidney adenocarcinoma cell line contains alterations in the U3 region of the long terminal repeat. J. Virol. 60:1–11.PubMedGoogle Scholar
  268. Wensel, D. L., Li, W., and Cunningham, J. M. 2003. A virus-virus interaction circumvents the virus receptor requirement for infection by pathogenic retroviruses. J. Virol. 77:3460–3469.PubMedCrossRefGoogle Scholar
  269. Wootton, S. K., Halbert, C. L., and Miller, A. D. 2005. Sheep retrovirus structural protein induces lung tumours. Nature 434:904–907.PubMedCrossRefGoogle Scholar
  270. Wrona, T. J., Lozano, M., Binhazim, A. A., and Dudley, J. P. 1998. Mutational and functional analysis of the C-terminal region of the C3H mouse mammary tumor virus superantigen. J. Virol. 72:4746–4755.PubMedGoogle Scholar
  271. Wu, T., Yan, Y., and Kozak, C. A. 2005. Rmcf2, a xenotropic provirus in the Asian mouse species Mus castaneus, blocks infection by polytropic mouse gammaretroviruses. J. Virol. 79:9677–9684.PubMedCrossRefGoogle Scholar
  272. Yan, Y., Buckler-White, A., Wollenberg, K., and Kozak, C. A. 2009a. Origin, antiviral function and evidence for positive selection of the gammaretrovirus restriction gene Fv1 in the genus Mus. Proc. Natl. Acad. Sci. U S A 106:3259–3263.PubMedCrossRefGoogle Scholar
  273. Yan, Y., Knoper, R. C., and Kozak, C. A. 2007. Wild mouse variants of envelope genes of xenotropic/polytropic mouse gammaretroviruses and their XPR1 receptors elucidate receptor determinants of virus entry. J. Virol. 81:10550–10557.PubMedCrossRefGoogle Scholar
  274. Yan, Y., Liu, Q., and Kozak, C. A. 2009b. Six host range variants of the xenotropic/polytropic gammaretroviruses define determinants for entry in the XPR1 cell surface receptor. Retrovirology 6:87.PubMedCrossRefGoogle Scholar
  275. Yang, J. N., and Dudley, J. 1992. Endogenous Mtv-8 or a closely linked sequence stimulates rearrangement of the downstream Vκ9 gene. J. Immunol. 149:1242–1251.PubMedGoogle Scholar
  276. Yang, J. N., and Dudley, J. P. 1991. The endogenous Mtv-8 provirus resides within the Vκ locus. J. Virol. 65:3911–3914.PubMedGoogle Scholar
  277. Yazdanbakhsh, K., Park, C. G., Winslow, G. M., and Choi, Y. 1993. Direct evidence for the role of COOH terminus of mouse mammary tumor virus superantigen in determining T cell receptor Vβ specificity. J. Exp. Med. 178:737–741.PubMedCrossRefGoogle Scholar
  278. Zapata-Benavides, P., Saavedra-Alonso, S., Zamora-Avila, D., Vargas-Rodarte, C., Barrera-Rodriguez, R., Salinas-Silva, J., Rodriguez-Padilla, C., Tamez-Guerra, R., and Trejo-Avila, L. 2007. Mouse mammary tumor virus-like gene sequences in breast cancer samples of Mexican women. Intervirology 50:402–407.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jaquelin P. Dudley
    • 1
    Email author
  • Jennifer A. Mertz
  • Sanchita Bhadra
  • Massimo Palmarini
  • Christine A. Kozak
  1. 1.Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinUSA

Personalised recommendations