Skip to main content

Genetics of Host Resistance to Retroviruses and Cancer

  • Chapter
  • First Online:
Retroviruses and Insights into Cancer
  • 630 Accesses

Abstract

As with all infectious diseases, susceptibility to infection by oncogenic retroviruses is influenced by host genes. Insights into retroviral infection, both at the cellular and organismal level, have been determined through classical genetic studies, genetic manipulation of cell-culture systems, and the use of genetically modified animals. Host genes can regulate virtually every step in the retrovirus infection pathway—from virus entry to intrinsic cellular responses to infection, to the host immune response to infected cells. Identification of many of the genes and mechanisms that control retroviral infection has occurred through the study of two organisms: chickens and mice, by naturally occurring pathogens, specifically; from avian sarcoma/leukosis virus (ASLV) and from murine leukemia virus (MuLV) and mouse mammary tumor virus (MMTV), respectively. Although much has been learned about the in vivo retroviral life cycle and the control of infection, surprisingly few genes that control retroviral oncogenesis beyond the stage of infection have been identified through the use of genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abudu, A., Takaori-Kondo, A., Izumi, T., et al. 2006. Murine retrovirus escapes from murine APOBEC3 via two distinct novel mechanisms. Curr. Biol. 16:1565–1570.

    Article  PubMed  CAS  Google Scholar 

  • Acha-Orbea, H, Shakhov, A. N., Scarpellino, L., et al. 1991. Clonal deletion of Vβ14-bearing T cells in mice transgenic for mammary tumor virus. Nature 350:207–210.

    Article  PubMed  CAS  Google Scholar 

  • Albritton, L. M., Tseng, L., Scadden, D., et al. 1989. A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell 57:659–666.

    Article  PubMed  CAS  Google Scholar 

  • Arnaud, F., Caporale, M., Varela, M., et al. 2007. A paradigm for virus-host coevolution: sequential counter-adaptations between endogenous and exogenous retroviruses. PLoS Pathog. 3:e170–e170

    Article  PubMed  CAS  Google Scholar 

  • An, P., Bleiber, G., Duggal, P., et al. 2004. APOBEC3G genetic variants and their influence on the progression to AIDS. J. Virol. 78:11070–11076.

    Article  PubMed  CAS  Google Scholar 

  • Bacon, L. D., Hunt, H. D., Cheng, H. H. 2000. A review of the development of chicken lines to resolve genes determining resistance to diseases. Poult. Sci. 79:1082–1093.

    PubMed  CAS  Google Scholar 

  • Baillie, G. J., van de Lagemaat, L. N., Baust, C., et al. 2004. Multiple groups of endogenous betaretroviruses in mice, rats and other mammals. J. Virol. 78:5784–5798.

    Article  PubMed  CAS  Google Scholar 

  • Ball, J. K., Arthur L. O., Dekaban G. A. 1985. The involvement of type-B retrovirus in the induction of thymic lymphomas. Virology 140:159–172.

    Article  PubMed  CAS  Google Scholar 

  • Barnard, R. J. O., Elleder, D., Young, J. A. T. 2006. Avian sarcoma and leukosis virus-receptor interactions: From classical genetics to novel insights into virus-cell membrane fusion. Virology 344:25–29.

    Article  PubMed  CAS  Google Scholar 

  • Bates, P., Young, J. A. T., Varmus, H. E. 1993. A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell 74:1043–1051.

    Article  PubMed  CAS  Google Scholar 

  • Begovich, A. B., Vu, T. H., Jones, P. P. 1990. Characterization of the molecular defects in the mouse E beta f and E beta q genes. Implications for the origin of MHC polymorphism. J. Immunol. 144:1957–1964.

    PubMed  CAS  Google Scholar 

  • Bentvelzen, P., Brinkhof, J., Haaijman, J. J. 1978. Genetic control of endogenous murine mammary tumour viruses reinvestigated. Eur J Cancer 14:1137–1147.

    Article  PubMed  CAS  Google Scholar 

  • Berkhout, B., Grigoriev, A., Bakker, M., et al. 2002. Codon and amino acid usage in retroviral genomes is consistent with virus-specific nucleotide pressure. AIDS Res. and Hum. Retroviruses 18:133–141.

    Article  CAS  Google Scholar 

  • Best, S., Le Tissier P., Towers G., et al. 1996. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382:826–829.

    Article  PubMed  CAS  Google Scholar 

  • Beutler B. 2000. Tlr4: Central component of the sole mammalian LPS sensor. Curr. Opinion in Immunol. 12:20–26.

    Article  CAS  Google Scholar 

  • Beutner, U., McLellan B., Draus E., et al. 1996. Lack of MMTV superantigen presentation in MHC Class II-deficient mice. Cell Immunol. 168:141–147.

    Article  PubMed  CAS  Google Scholar 

  • Bhadra, S., Lozano, M. M., Dudley, J. P. 2005. Conversion of mouse mammary tumor virus to a lymphomagenic virus. J. Virol. 79:12592–12596.

    Article  PubMed  CAS  Google Scholar 

  • Bhadra, S., Lozano, M. M., Payne, S. M., et al. 2006. Endogenous MMTV proviruses induce susceptibility to both viral and bacterial pathogens. PLoS Pathog. 2:e128–e128.

    Article  PubMed  CAS  Google Scholar 

  • Bieniasz, P. D. 2004. Intrinsic immunitye: A front-line defense against viral attack. Nat. Immunol. 5:1109–1115.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, K. N., Verma, M., Kim, E. Y., et al. 2008. APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog. 4:e1000231.

    Google Scholar 

  • Bittner, J. J. 1936. Some possible effects of nursing on the mammary gland tumor incidence in mice. Science 84:162.

    Article  PubMed  CAS  Google Scholar 

  • Bramblett, D., Liu, J., Lozano, M., et al. 1997. Mouse mammary tumor virus: A virus that exploits the immune system. Leukemia. 11 Suppl. 3:183–186.

    Google Scholar 

  • Brojatsch, J., Naughton, J., Rolls, M. M., et al. 1996. CAR1, a TNFR-related protein, is a cellular receptor for cytopathic avian leukosis-sarcoma viruses and mediates apoptosis. Cell 87:845–855.

    Article  PubMed  CAS  Google Scholar 

  • Browne, E. P., and Littman, D. R. 2008. Species specific restriction of Apobec3 mediated hypermutation. J. Virol. in press.

    Google Scholar 

  • Buggiano, V., Goldman, A., Nepomnaschy, I., et al. 1999. Characterization of two infectious mouse mammary tumor viruses: Superantigenicity and tumorigenicity. Scand J. Immunol. 49:269–277.

    CAS  Google Scholar 

  • Burzyn, D., Rassa, J. C., Kim, D., et al. 2004. Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus. J. Virol. 78:576–584.

    Article  PubMed  CAS  Google Scholar 

  • Callahan, R., Sherr, C. J., Todaro, G. J. 1977. A new class of murine retroviruses: Immunological and biochemical comparison of novel isolates from Mus cervicolor and Mus caroli. Virology 80:401–416.

    Article  PubMed  CAS  Google Scholar 

  • Case, L. K., Petell, L., Yurkovetskiy, L., et al. 2008. Replication of beta- and gammaretroviruses is restricted in I/LnJ mice via the same genetic mechanism. J. Virol.

    Google Scholar 

  • Case, L. K., Purdy, A., Golovkina, T. V. 2005. Molecular and cellular basis of the retrovirus resistance in I/LnJ mice. J. Immunol. 175:7543–7549.

    PubMed  CAS  Google Scholar 

  • Chai, N., and Bates, P. 2006. Na+/H+ exchanger type 1 is a receptor for pathogenic subgroup J avian leukosis virus. Proc Natl Acad Sci U S A. 103:5531–5536.

    Article  CAS  Google Scholar 

  • Chesebro, B., and Wehrly, K. 1978. Rfv-1 and Rfv-2, two H-2-associated genes that influence recovery from Friend leukemia virus-induced splenomegaly. J. Immunol. 120:1081–1085.

    PubMed  CAS  Google Scholar 

  • Chesebro, B., and Wehrly, K. 1979. Identification of a non-H-2 gene (Rfv-3) influencing recovery from viremia and leukemia induced by Friend virus complex. Proc. Natl. Acad. Sci. U S A 76:425–429.

    Article  PubMed  CAS  Google Scholar 

  • Chesters, P. M., Howes, K., Petherbridge, L., et al. 2002. The viral envelope is a major determinant for the induction of lymphoid and myeloid tumours by avian leukosis virus subgroups A and J, respectively. J. Gen. Virol. 83:2553–2561.

    PubMed  CAS  Google Scholar 

  • Chiu, Y. L., and Greene, W. C. 2006. APOBEC3 cytidine deaminases: distinct antiviral actions along the retroviral life cycle. J. Biol. Chem. 281:8309–8312.

    Article  PubMed  CAS  Google Scholar 

  • Chiu, Y. L., Soros, V. B., Kreisberg, J. F., et al. 2005. Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 435:108–114.

    Article  PubMed  CAS  Google Scholar 

  • Choi, Y., Kappler, J. W., Marrack, P. 1991. A super antigen encoded in the open reading frame of the 3’ long terminal repeat of the mouse mammary tumor virus Nature 350:203–207.

    Article  PubMed  CAS  Google Scholar 

  • Clausse, N., Smith, R., Calberg-Bacq, C. M., et al. 1993. Mouse mammary-tumor virus activates Fgf-3/Int-2 less frequently in tumors from virgin than from parous mice. Int. J. Cancer 55:157–163.

    Article  PubMed  CAS  Google Scholar 

  • Courreges, M. C., Burzyn, D., Nepomnaschy, I., et al. 2007. Critical role of dendritic cells in mouse mammary tumor virus in vivo infection. J. Virol. 81:3769–3777.

    Article  PubMed  CAS  Google Scholar 

  • Cullen, B. R. 2006. Role and mechanism of action of the APOBEC3 family of antiretroviral resistance factors. J. Virol. 80:1067–1076.

    Article  PubMed  CAS  Google Scholar 

  • Dandekar, S., Rossito, P., Pickett, S., et al. 1987. Molecular characterization of the Akvr1 restriction gene: A defective endogenous retrovirus-borne gene identical to Fv4-r. J. Virol. 61:308–314.

    PubMed  CAS  Google Scholar 

  • Debre, P., Gisselbrecht, S., Pozo, F., et al. 1979. Genetic control of sensitivity to Moloney leukemia virus in mice. II. Mapping of three resistant genes within the H-2 complex. J. Immunol. 123:1806–1812.

    PubMed  CAS  Google Scholar 

  • Dembic, Z., Ayane, M., Klein, J., et al. 1985. Inbred and wild mice carry identical deletions in their E alpha MHC genes. EMBO J. 4:127–131.

    PubMed  CAS  Google Scholar 

  • DesGroseillers, L., and Jolicoeur, P. 1983. Physical mapping of the Fv-1 tropism host range determinant of BALB/c murine leukemia viruses. J. Virol. 46:685–696.

    Google Scholar 

  • Dudley, J., and Risser, R. 1984. Amplification and novel locations of endogenous mouse mammary tumor virus genomes in mouse T-cell lymphomas. J. Virol. 49:92–101.

    PubMed  CAS  Google Scholar 

  • Dux, A. 1972. Genetic aspects in the genesis of mammary cancer. In RNA Viruses and Host Genome in Oncogenesis, eds. P. Emmelot, and P. Bentvelzen, pp. 301–308. Amsterdam: North-Holland Publ.

    Google Scholar 

  • Dux, A., and Demant, P. 1987. MHC-controlled susceptibility to C3H-MTV-induced mouse mammary tumors is predominantly systemic rather than local. Int. J Cancer 40:372–377.

    Article  PubMed  CAS  Google Scholar 

  • Dzuris, J. L., Golovkina, T. V., and Ross, S. R. 1997. Both T and B cells shed infectious MMTV. J. Virol. 71:6044–6048.

    PubMed  CAS  Google Scholar 

  • Dzuris, J. L., Zhu, W., Golovkina, T. V., et al. 1999. Lack of receptor interference by endogenous expression of the mouse mammary tumor virus envelope protein. Virology 263:418–426.

    Article  PubMed  CAS  Google Scholar 

  • Elleder, D., Stepanets, V., Melder, D. C., et al. 2005. The receptor for the subgroup C avian sarcoma and leukosis viruses, Tvc, is related to mammalian butyrophilins, members of the immunoglobulin superfamily. J. Virol. 79:10408–10419.

    Article  PubMed  CAS  Google Scholar 

  • Finke, D., and Acha-Orbea, H. 2001. Differential migration of in vivo primed B and T lymphocytes to lymphoid and non-lymphoid organs. Eur. J. Immunol. 31:2603–2611.

    Article  PubMed  CAS  Google Scholar 

  • Finke, D., Luther, S. A., and Acha-Orbea, H. 2003. The role of neutralizing antibodies for mouse mammary tumor virus transmission and mammary cancer development. Proc. Natl. Acad. Sci. U S A. 100:199–204.

    Article  PubMed  CAS  Google Scholar 

  • Goff, S. P. 2004a. Genetic control of retrovirus susceptibility in mammalian cells. Annu. Rev. Genet. 38:61–85.

    Article  PubMed  CAS  Google Scholar 

  • Goff, S. P. 2004b. Retrovirus restriction factors. Mol. Cell 16:849–859.

    Article  PubMed  CAS  Google Scholar 

  • Golovkina, T. V., Chervonsky, A., Dudley, J. P., et al. 1992. Transgenic mouse mammary tumor virus superantigen expression prevents viral infection. Cell 69:637–645.

    Article  PubMed  CAS  Google Scholar 

  • Golovkina, T. V., Dudley, J. P., and Ross, S. R. 1998. Superantigen activity is need for mouse mammary tumor virus spread within the mammary gland. J. Immunol. 161:2375–2382.

    PubMed  CAS  Google Scholar 

  • Golovkina, T. V., Prescott, J. A., and Ross, S. R. 1993. Mouse mammary tumor virus-induced tumorigenesis in sag transgenic mice: A laboratory model of natural selection. J. Virol. 67:7690–7694.

    PubMed  CAS  Google Scholar 

  • Harris, R. S., Bishop, K. N., Sheehy, A. M., et al. 2003. DNA deamination mediates innate immunity to retroviral infection. Cell 113:803–809.

    Article  PubMed  CAS  Google Scholar 

  • Hasenkrug, K. J., and Chesebro, B. 1997. Immunity to retroviral infection: The Friend virus model. Proc. Natl. Acad. Sci. U S A. 94:7811–7816.

    Article  PubMed  CAS  Google Scholar 

  • Hasenkrug, K. J., Valenzuela, A., Letts, V. A., et al. 1995. Chromosome mapping of Rfv3, a host resistance gene to Friend murine retrovirus. J. Virol. 69:2617–2620.

    PubMed  CAS  Google Scholar 

  • Held W., Waanders, G., Shakhov, A. N., et al. 1993. Superantigen-induced immune stimulation amplifies mouse mammary tumor virus infection and allows virus transmission. Cell 74:529–540.

    Article  PubMed  CAS  Google Scholar 

  • Held, W., Waanders, G. A., MacDonald, H. R., et al. 1994. MHC class II hierarchy of superantigen presentation predicts efficiency of infection with mouse mammary tumor virus. Int Immunol. 6:1403–1407.

    Article  PubMed  CAS  Google Scholar 

  • Hoatlin, M. E., and Kabat, D. 1995. Host-range control of a retroviral disease: Friend erythroleukemia. Trends Microbiol. 3:51–57.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, R. K., Malim, M. H., and Bishop, K. N. 2007. APOBEC-mediated viral restriction: Not simply editing? TIBS. 32:118–128.

    PubMed  CAS  Google Scholar 

  • Hook, L. M., Agafonova, Y., Ross, S. R., et al. 2000. Genetics of mouse mammary tumor virus-induced mammary tumors: Linkage of tumor induction to the gag gene. J. Virol. 74:8876–8883.

    Article  PubMed  CAS  Google Scholar 

  • Ignatowicz, L., Kappler, J., and Marrack, P. 1992. The effects of chronic infection with a superantigen-producing virus. J. Exp Med. 175:917–923.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, H., Sato, H., and Odaka, T. 1981. Mapping of the Fv-4 mouse gene controlling resistance to murine leukemia viruses. Int. J. Cancer 28:237–240.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, H., and Sugimura, H. 1989. Fv-4 resistance gene: A truncated endogenous murine leukemia virus with ecotropic interference properties. J. Virol. 63:5405–5412.

    PubMed  CAS  Google Scholar 

  • Jenkins, N. A., Copeland, N. G., Taylor, B. A., et al. 1982. Ecotropic murine leukemia virus DNA content of normal and lymphomatous tissues of BXH-2 recombinant inbred mice. J. Virol. 42:379–388.

    PubMed  CAS  Google Scholar 

  • Jolicoeur, P., and Baltimore, D. 1976. Effect of Fv-1 gene product on proviral DNA formation and integration in cells infected with murine leukemia viruses. Proc. Natl. Acad. Sci. U S A. 73:2236–2240.

    Article  PubMed  CAS  Google Scholar 

  • Jude, B. A., Pobezinskaya, Y., Bishop, J., et al. 2003. Subversion of the innate immune system by a retrovirus. Nat. Immunol. 4:573–578.

    Article  PubMed  CAS  Google Scholar 

  • Jung, Y. T., and Kozak, C. A. 2000. A single amino acid change in the murine leukemia virus capsid gene responsible for the Fv1(nr) phenotype. J. Virol. 74:5385–5387.

    Article  PubMed  CAS  Google Scholar 

  • Kanari, Y., Clerici, M., Abe, H., et al. 2005. Genotypes at chromosome 22q12-13 are associated with HIV-1-exposed but uninfected status in Italians. AIDS. 19:1015–1024.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, C. A., and Chakraborti, A. 1996. Single amino acid changes in the murine leukemia virus capsid protein gene define the target of Fv1 resistance. Virology 225:300–305.

    Article  PubMed  CAS  Google Scholar 

  • Kozak, C., et al. 1987. A standardized nomenclature for endogenous mouse mammary tumor viruses. J. Virol. 61:1651–1654.

    PubMed  CAS  Google Scholar 

  • Lander, E. S., et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921.

    Article  PubMed  CAS  Google Scholar 

  • LaRue, R. S., et al. 2009. Guidelines for naming nonprimate APOBEC3 genes and proteins. J. Virol. 83:494–497.

    Article  PubMed  CAS  Google Scholar 

  • Liddament, M. T., Brown, W. L., Schumacher, A. J., et al. 2004. APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr. Biol. 14:1385–1391.

    Article  PubMed  CAS  Google Scholar 

  • Lilly, F. 1966. The inheritance of susceptibility to the Gross leukemia virus in mice. Genetics 53:529–539.

    PubMed  CAS  Google Scholar 

  • Lilly, F. 1968. The effect of histocompatibility-2 type on response to friend leukemia virus in mice. J. Exp. Med. 127:465–473.

    Article  PubMed  CAS  Google Scholar 

  • Limjoco, T. I., Dickie, P., Ikeda, H., et al. 1993. Transgenic Fv-4 mice resistant to Friend virus. J. Virol. 67:4163–4168.

    PubMed  CAS  Google Scholar 

  • Liu, R., Paxton, W. A., Choe, S., et al. 1996. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–378.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S. L., and Miller, A. D. 2007. Oncogenic transformation by the jaagsiekte sheep retrovirus envelope protein. Oncogene 26:789–801.

    Article  PubMed  CAS  Google Scholar 

  • Lonai, P., and Haran-Ghera, N. 1977. Resistance genes to murine leukemia in the I immune response gene region of the H-2 complex. J. Exp. Med. 146:1164–1168.

    Article  PubMed  CAS  Google Scholar 

  • Low, A., Okeoma, C. M., Lovsin, N., et al. 2009. Enhanced replication and pathogenesis of moloney murine leukemia virus in mice defective in the murine APOBEC3 gene. Virology 385:455–463.

    Article  PubMed  CAS  Google Scholar 

  • Luther, S. A., Gulbranson-Judge, A., Acha-Orbea, H., et al. 1996. Viral superantigen drives extrafollicular and follicular B cell differentiation leading to virus-specific antibody production. J. Exp. Med. 185:551–562.

    Article  Google Scholar 

  • MacDearmid, C. C., Case L. K., Starling, C. L., et al. 2006. Gradual elimination of retroviruses in YBR/Ei mice. J. Virol. 80:2206–2215.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, N., Palmarini, M., Murgia, C., et al. 2001. Direct transformation of rodent fibroblasts by jaagsiekte sheep retrovirus DNA. Proc. Natl. Acad. Sci. U S A. 98:4449–4454.

    Article  PubMed  CAS  Google Scholar 

  • Mangeat, B., Turelli, P., Caron, G., et al. 2003. Broad antiretroviral defense by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424:99–103.

    Article  PubMed  CAS  Google Scholar 

  • Mariani, R., Chen, D., Schrofelbauer, B., et al. 2003. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114:21–31.

    Article  PubMed  CAS  Google Scholar 

  • Marin, M., Rose, K. M., Kozak, S. L., et al. 2003. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat. Med. 9:1398–1403.

    Article  PubMed  CAS  Google Scholar 

  • Marrack, P., Kushnir, E., and Kappler, J. 1991. A maternally inherited superantigen encoded by mammary tumor virus. Nature 349:524–526.

    Article  PubMed  CAS  Google Scholar 

  • Martin, P., Ruiz, S. R., Martinez del Hoyo, G., et al. 2002. Dramatic increase in lymph node dendritic cell numbers during infection by the mouse mammary tumor virus occurs by a CD62L-dependent blood-borne DC recruitment. Blood 99:1282–1288.

    Article  PubMed  CAS  Google Scholar 

  • Matano, T., Odawara, T., Ohshima, M., et al. 1993. Trans-dominant interference with virus infection at two different stages by a mutant envelope protein of Friend murine leukemia virus. J. Virol. 67:2026–2033.

    PubMed  CAS  Google Scholar 

  • Mertz, J. A., Simper, M. S., Lozano, M. M., et al. 2005. Mouse mammary tumor virus encodes a self-regulatory RNA export protein and is a complex retrovirus. J. Virol. 79:14737–14747.

    Article  PubMed  CAS  Google Scholar 

  • Mikl, M. C., Watt, I. N., Lu, M., et al. 2005. Mice deficient in APOBEC2 and APOBEC3. Mol. Cell. Biol. 25:7270–7277.

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa, M., Nishio, J., Wehrly, K., et al. 1992. Spontaneous recovery from Friend retrovirus-induced leukemia. Mapping of the Rfv-2 gene in the Q/TL region of mouse MHC. J. Immunol. 148:1964–1967.

    PubMed  CAS  Google Scholar 

  • Miyazawa, M., Tsuji-Kawahara, S., and Kanari, Y. 2008. Host genetic factors that control immune responses to retrovirus infections. Vaccine 26:2981–2996.

    Article  PubMed  CAS  Google Scholar 

  • Moore, J. P., and Doms, R. W. 2003. The entry of entry inhibitors: A fusion of science and medicine. Proc. Natl. Acad. Sci. U S A. 100:10598–10602.

    Article  PubMed  CAS  Google Scholar 

  • Morris, V. L., Medeiros, E., Ringold, G. M., et al. 1977. Comparison of mouse mammary tumor virus-specific DNA in inbred, wild and Asian mice, and in tumors and normal organs from inbred mice. J. Mol. Biol. 114:73–91.

    Article  PubMed  CAS  Google Scholar 

  • Moyes, D., Griffiths, D. J., and Venables, P. J. 2007. Insertional polymorphisms: A new lease of life for endogenous retroviruses in human disease. Trends Genet. 23:326–333.

    Article  PubMed  CAS  Google Scholar 

  • Murcia, P. R., Arnaud, F., and Palmarini, M. 2007. The transdominant endogenous retrovirus enJS56A1 associates with and blocks intracellular trafficking of Jaagsiekte sheep retrovirus Gag. J. Virol. 81:1762–1772.

    Article  PubMed  CAS  Google Scholar 

  • Mustafa, F., Bhadra, S., Johnston, D., et al. 2003. The type B leukemogenic virus truncated superantigen is dispensable for T-cell lymphomagenesis. J. Virol. 77:3866–3870.

    Article  PubMed  CAS  Google Scholar 

  • Nandi, S., Handin, M., Robinson, A., et al. 1966. Susceptibility of mammary tissues of “genetically resistant” strains of mice to mammary tumor virus. J. Natl. Cancer Inst. 36:783–80.

    PubMed  CAS  Google Scholar 

  • Nandi, S., and McGrath, C. M. 1973. Mammary neoplasia in mice. Adv. Canc. Res. 17:353–414.

    Article  Google Scholar 

  • Nishigaki, K., Thompson, D., Hanson, C., et al. 2001. The envelope glycoprotein of friend spleen focus-forming virus covalently interacts with and constitutively activates a truncated form of the receptor tyrosine kinase Stk. J. Virol. 75:7893–7903.

    Article  PubMed  CAS  Google Scholar 

  • Nisole, S., Stoye, J. P., and Saib, A. 2005. Trim family proteins: retroviral restriction and antiviral defence. Nature Rev. Microbiol. 3:799–808.

    CAS  Google Scholar 

  • Odaka, T., Ikeda, H., Moriwaki, K., et al. 1978. Genetic resistance in Japanese wild mice (Mus musculus molossinus) to an NB-tropic Friend murine leukemia virus. J. Natl. Cancer Inst. 61:1301–1306.

    PubMed  CAS  Google Scholar 

  • Odaka, T., Ikeda, H., Yoshikura, H., et al. 1981. Fv-4: Gene controlling resistance to NB-tropic Friend murine leukemia virus. Distribution in wild mice, introduction into genetic background of BALB/c mice, and mapping of chromosomes. J. Natl. Cancer Inst. 67:1123–1127.

    PubMed  CAS  Google Scholar 

  • Okeoma, C. M., Lovsin, N., Peterlin, B. M., et al. 2007. APOBEC3 inhibits mouse mammary tumor virus replication in vivo. Nature 445:927–930.

    Article  PubMed  CAS  Google Scholar 

  • Okeoma, C. M., Shen, M., and Ross, S. R. 2008. A novel block to mouse mammary tumor virus infection of lymphocytes in B10.BR mice. J. Virol. 82:1314–1322.

    Article  PubMed  CAS  Google Scholar 

  • Okeoma, C. M., Petersen, J., and Ross, S. R. 2009a. Expression of murine APOBEC3 alleles in different mouse strains and their effect on mouse mammary tumor virus infection. J. Virol. 83:3029–3028.

    Article  PubMed  CAS  Google Scholar 

  • Okeoma, C. M., Low, W., Bailis, W., et al. 2009b. Induction of APOBEC3 in vivo causes increased restriction of retrovirus infection. J. Virol. 83:3486–3495.

    Article  PubMed  CAS  Google Scholar 

  • Okimoto, M. A., and Fan, H. 1999. Moloney murine leukemia virus infects cells of the developing hair follicle after neonatal subcutaneous inoculation in mice. J. Virol. 73:2509–2516.

    PubMed  CAS  Google Scholar 

  • Outzen, H. C., Morrow, D., and Shultz, L. D. 1985. Attenuation of exogenous murine mammary tumor virus virulence in the C3H/HeJ mouse substrain bearing the Lps mutation. J. Natl. Canc. Inst. 75:917–923.

    CAS  Google Scholar 

  • Overbaugh, J., Miller, A. D., and Eiden, M. V. 2001. Receptors and entry cofactors for retroviruses include single and multiple transmembrane-spanning proteins as well as newly described glycophosphatidylinositol-anchored and secreted proteins. Microbiol. and Mol. Biol. Rev. 65:371–389.

    CAS  Google Scholar 

  • Palmarini, M., Datta, S., Omid, R., et al. 2000. The long terminal repeat of Jaagsiekte sheep retrovirus is preferentially active in differentiated epithelial cells of the lungs. J. Virol. 74:5776–5787.

    Article  PubMed  CAS  Google Scholar 

  • Palmarini, M., Maeda, N., Murgia, C., et al. 2001. A phosphatidylinositol 3-kinase docking site in the cytoplasmic tail of the Jaagsiekte sheep retrovirus transmembrane protein is essential for envelope-induced transformation of NIH 3T3 cells. J. Virol. 75:11002–11009.

    Article  PubMed  CAS  Google Scholar 

  • Palmarini, M., Mura, M., and Spencer, T. E. 2004. Endogenous betaretroviruses of sheep: Teaching new lessons in retroviral interference and adaptation. J. Gen. Virol. 85:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Papiernik, M., Pontoux, C., and Golstin, P. 1995. Non-exclusive Fas control and age dependence of viral superantigen-induced clonal deletion in lupus-prone mice. Eur. J. Immunol. 25:1517–1523.

    Article  PubMed  CAS  Google Scholar 

  • Pataer, A., Kamoto, T., Lu, L. M., et al. 1996. Two dominant host resistance genes to pre-B lymphoma in wild-derived inbred mouse strain MSM/Ms. Cancer Res. 56:3716–3720.

    PubMed  CAS  Google Scholar 

  • Paxton, W. A., Martin, S. R., Tse D., et al. 1996. Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat. Med. 2:412–417.

    Article  PubMed  CAS  Google Scholar 

  • Payne, L. N., Brown, S. R., Bumstead, N., et al. 1991. A novel subgroup of exogenous avian leukosis virus in chickens. J. Gen. Virol. 72:801–807.

    Article  PubMed  Google Scholar 

  • Payne, S. H., and Elder, J. H. 2001. The role of retroviral dUTPases in replication and virulence. Curr. Protein. Pept. Sci. 2:381–388.

    Article  PubMed  CAS  Google Scholar 

  • Persons, D. A., Paulson, R. F., Loyd, M. R., et al. 1999. Fv2 encodes a truncated form of the Stk receptor tyrosine kinase. Nature Genetics. 23:159–165.

    Article  PubMed  CAS  Google Scholar 

  • Pion, M., Granelli-Piperno, A., Mangeat, B., et al. 2006. APOBEC3G/3F mediates intrinsic resistance of moncyte-derived dendritic cells to HIV-1 infection. J. Exp. Med. 203:2887–2893.

    Article  PubMed  CAS  Google Scholar 

  • Pucillo, C., Cepeda, R., and Hodes, R. J. 1993. Expression of a MHC Class II transgene determines superantigenicity and susceptibility to mouse mammary tumor virus infection. J. Exp. Med. 178:1441–1445

    Article  PubMed  CAS  Google Scholar 

  • Purdy, A., Case, L., Duvall, M., et al. 2003. Unique resistance of I/LnJ mice to a retrovirus is due to sustained IFN-gamma dependent production of virus-neutralizing antibodies. J. Exp. Med. 197:233–243.

    Article  PubMed  CAS  Google Scholar 

  • Rai, S. K., Duh, F. M., Vigdorovich, V., et al. 2001. Candidate tumor suppressor HYAL2 is a glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor for jaagsiekte sheep retrovirus, the envelope protein of which mediates oncogenic transformation. Proc. Natl. Acad. Sci. U S A. 98:4443–4448.

    Article  PubMed  CAS  Google Scholar 

  • Rassa, J. C., Meyers, J. L., Zhang, Y., et al. 2002. Murine retroviruses activate B cells via interaction with Toll-like receptor 4. Proc Natl Acad Sci USA. 99:2281–2286.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, D. M. 1973. Spontaneous mammary tumor incidence in C3H/HeJ mice. Jax. Notes 413:1–3.

    Google Scholar 

  • Ross, S. R., Schofield, J. J., Farr, C. J., et al. 2002. Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus. Proc. Natl. Acad. Sci. U S A. 99:12386–12390.

    Article  PubMed  CAS  Google Scholar 

  • Ross, S. R. 2009. Are viruses inhibited by APOBEC3 molecules from their host species? PLoS Pathog.ens 5:e1000347. doi:10.1371/journal.ppat.1000347

    Google Scholar 

  • Rulli, K., Lenz, J., and Levy, L. S. 2002. Disruption of hematopoiesis and thymopoiesis in the early premalignant stages of infection with SL3-3 murine leukemia virus. J. Virol. 76:2363–2374.

    Article  PubMed  CAS  Google Scholar 

  • Rulli, S. J., Mirro, J., Hill, S. A., et al. 2008. Interactions of murine APOBEC3 and human APOBEC3G with murine leukemia viruses. J. Virol. 82: 6566–6575.

    Article  PubMed  CAS  Google Scholar 

  • Ruscetti, S., Matthai, R., and Potter, M. 1985. Susceptibility of BALB/c mice carrying various DBA/2 genes to development of Friend murine leukemia virus-induced erythroleukemia. J. Exp. Med. 162:1579–1587.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar, N. H., Golovkina, T., and Uz-Zaman, T. 2004. RIII/Sa mice with a high incidence of mammary tumors express two exogenous strains and one potential endogenous strain of mouse mammary tumor virus. J. Virol. 78:1055–1062.

    Article  PubMed  CAS  Google Scholar 

  • Santiago M L, Montano M, Benitez R, et al. (2008) Apobec3 encodes Rfv3, a gene influencing neutralizing antibody control of retrovirus infection. Science 321:1343–1346

    Article  PubMed  CAS  Google Scholar 

  • Sheehy, A. M., Gaddis, N. C., Choi, J. D., et al. 2002. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:646–650.

    Article  PubMed  CAS  Google Scholar 

  • Shirakawa, K., Takaori-Kondo, A., Kobayashi, M., et al. 2006. Ubiquitination of APOBEC3 proteins by the Vif-Cullin5-ElonginB-ElonginC complex. Virology 344:263–266.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, R. H. 2007. Viral encounters with 2’,5’-oligoadenylate synthetase and RNase L during the interferon antiviral response. J. Virol. 81:12720–12729.

    Article  PubMed  CAS  Google Scholar 

  • Simard, J., Dumont, M., Soucy, P., et al. 2002. Perspective: Prostate cancer susceptibility genes. Endocrinology 143:2029–2040.

    Article  PubMed  CAS  Google Scholar 

  • Steeves, R., and Lilly, F. 1977. Interactions between host and viral genomes in mouse leukemia. Annu. Rev. Genet. 11:277–296.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, I., Jude, B. A., Zhang, A. R., et al. 2006. Sequences within the gag gene of mouse mammary tumor virus needed for mammary gland cell transformation. J. Virol. 80:3215–3224.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, E., Tsuji-Kawahara, S., Sakamoto, M., et al. 2008. Mouse APOBEC3 restricts Friend leukemia virus infection and pathogenesis in vivo. J. Virol. 82:10998–11008.

    Article  PubMed  CAS  Google Scholar 

  • Talbot, S. J., and Crawford, D. H. 2004. Viruses and tumours – an update. Eur. J. Cancer 40:1998–2005.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, G. M., Gao, Y., and Sanders, D. A. 2001. Fv-4: Identification of the defect in Env and the mechanism of resistance to ecotropic murine leukemia virus. J. Virol. 75:11244–11248.

    Article  PubMed  CAS  Google Scholar 

  • Towers, G. J. 2007. The control of viral infection by tripartite motif proteins and cyclophilin A. Retrovirology 440.

    Google Scholar 

  • Tsubura, A., Inaba, M., Imai, S., et al. 1988. Intervention of T-cells in transportation of mouse mammary tumor virus (milk factor) to mammary gland cells in vivo. Canc. Res. 48:6555–6559.

    CAS  Google Scholar 

  • Urisman, A., Molinaro, R. J., Fischer, N., et al. 2006. Identification of a novel Gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog. 2:e25.

    Article  PubMed  CAS  Google Scholar 

  • Vacheron, S., Luther, S. J., and Acha-Orbea, H. 2002. Preferential infection of immature dendritic cells and B cells by mouse mammary tumor virus. J. Immunol. 168:3470–3476.

    PubMed  CAS  Google Scholar 

  • Weiss, R. A. 1993. Cellular receptors and viral glycoproteins involved in retrovirus entry. In Retroviridae, ed. J. A. Levy, pp. 1–108. New York: Plenum Press

    Google Scholar 

  • Weiss, R. A. 2001. Retroviruses and cancer. Curr. Sci. 81:528–534.

    Google Scholar 

  • Wiegand, H. L., Doehle, B. P., Bogerd, H. P., et al. 2004. A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO. J. 23:2451–2458.

    Article  PubMed  CAS  Google Scholar 

  • Wrona, T., and Dudley, J. P. 1996. Major histocompatibility complex class II I-E independent transmission of C3H mouse mammary tumor virus. J. Virol. 70:1246–1249.

    PubMed  CAS  Google Scholar 

  • Wu, T., Yan, Y., and Kozak, C. A. 2005. Rmcf2, a xenotropic provirus in the Asian mouse species Mus castaneus, blocks infection by polytropic mouse gammaretroviruses. J. Virol. 79:96779696.

    Google Scholar 

  • Xiao, Z., Ehrlich, E., Yu Y., et al. 2006. Assembly of HIV-1 Vif-Cul5 E3 ubiquitin ligase through a novel zinc-binding domain-stabilized hydrophobic interface in Vif. Virology 349:290–299.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W. K., Yang, D.-M., and Kiggans, J. O. J. 1980. Synthesis and circularization of N- and B-tropic retroviral DNA in Fv-1 permissive and restrictive mouse cells. Proc. Natl. Acad. Sci. U S A. 77:2294–2298.

    Google Scholar 

  • Yang, Y. L., Guo, L., Xu, S., et al. 1999. Receptors for polytropic and xenotropic mouse leukaemia viruses encoded by a single gene at Rmc1. Nat. Genet. 21:216–219.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto, T., Nagase, H., Nakano, H., et al. 1994. A Vβ8.2-specific superantigen from exogenous mouse mammary tumor virus carried by FM mice. Eur. J. Immunol. 24:1612–1619.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Li, X., Ma, J., et al. 2008. The incorporation of APOBEC3 proteins into murine leukemia viruses. Virology 378:69–78.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Q., Maitra, U., Johnston, D., et al. 2004. The homeodomain protein CDP regulates mammary-specific gene transcription and tumorigenesis. Mol. Cell Biol. 24:4810–4823.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan R. Ross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Okeoma, C.M., Ross, S.R. (2010). Genetics of Host Resistance to Retroviruses and Cancer. In: Dudley, J. (eds) Retroviruses and Insights into Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09581-3_4

Download citation

Publish with us

Policies and ethics