Skip to main content

Mechanisms of Oncogenesis by Retroviruses

  • Chapter
  • First Online:
Retroviruses and Insights into Cancer

Abstract

Most replication-competent retroviruses cause cancer only after a long latent period, by insertional mutagenesis of the host genome, usually resulting in activation of a cellular proto-oncogene. In contrast, acute-transforming retroviruses, which have transduced host proto-oncogenes, cause rapid tumor formation and death. In both cases, some of the same genes are overexpressed and/or mutated, including genes involved in mitogenic signaling, cell cycle control, and cell survival.

We are near the 100th anniversaries of the discoveries of both leukemia (1908) and sarcoma (1910) viruses in birds. In honor of this important milestone, this review will be focused mainly on studies of oncogensis by avian viruses, which paved the way for studies with many other oncogenic retroviruses. Rous sarcoma virus (RSV) causes rapid oncogenesis by high level expression of an activated src gene tyrosine kinase. The host src gene was transduced by the virus without its C-terminal negative regulatory domain.

In contrast, avian leukosis virus (ALV) induces B-cell lymphomas by insertional mutagenesis after the provirus integrates into the host genome. In addition to activation of classical proto-oncogenes, proviral insertions can activate cellular micro-RNAs called oncomiRs. The precursor of miR-155, which is upregulated in many human tumors, was first identified as a common ALV B-cell integration cluster (bic) in metastatic, long-latency lymphomas. Targets of miR-155 repression include tumor-suppressor genes, providing a novel mechanism for their inactivation in ALV-induced tumors. Telomerase reverse transcriptase is also activated by enhancer insertion in many ALV-induced lymphomas, providing a good model system for study of telomerase-dependent tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akagi, K., Suzuki, T., Stephens, R. M. et al. 2004. RTCGD: retroviral tagged cancer gene database. Nucleic Acids Res. 32:D523–D527.

    PubMed  CAS  Google Scholar 

  • Alian, A., Sela-Donenfeld, D., Panet, A. et al. 2000. Avian hemangioma retrovirus induces cell proliferation via the envelope env gene. Virology 276:161–168.

    PubMed  CAS  Google Scholar 

  • Arrigo , S., and Beemon , K. 1988. Regulation of Rous sarcoma virus RNA splicing and stability. Mol. Cell. Biol. 8:4858–4867.

    PubMed  CAS  Google Scholar 

  • Bagga, S., Bracht, J., Hunter, S. et al. 2005. Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation. Cell 122:553–563.

    PubMed  CAS  Google Scholar 

  • Barr, S. D., Leipzig, J., Shinn, P., et al. 2005. Integration targeting by avian sarcoma-leukosis virus and human immunodeficiency virus in the chicken genome. J. Virol. 79:12035–12044.

    PubMed  CAS  Google Scholar 

  • Beck-Engeser, G. B., Lum, A. M., Huppi, K. et al. 2008. PvtI-encoded microRNAs in oncogenesis. Retrovirology 5:4.

    PubMed  Google Scholar 

  • Beemon, K. L. 1981. Transforming proteins of some feline and avian sarcomaviruses are related structurally and functionally. Cell 24:145–153.

    PubMed  CAS  Google Scholar 

  • Blasco, M. A., Lee, H. W., Hande, M. P. et al. 1997. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34.

    PubMed  CAS  Google Scholar 

  • Blyth, K., Vaillant, F., Hanlon, L. et al. 2006. Runx2 and Myc collaborate in lymphoma development by suppressing apoptotic and growth arrest pathways in vivo. Cancer Res. 66:2195–2201.

    PubMed  CAS  Google Scholar 

  • Bolisetty, M. T., Dy, G., Tam, W. et al. 2009. Reticuloendotheliosis virus strain T induces miR-155 which targets JARID2 and promotes cell survival. J. Virol. (In press).

    Google Scholar 

  • Burge, C. B., Tuschl, T., Sharp, P. A. 1999. Splicing of precursors to mRNAs by the spliceosome. In The RNA World, 2nd edn. eds. R. F. Gesteland et al. pp. 525–560. Cold Spring Harbor: Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Cabello-Villegas, J., Giles, K. E., Soto, A. M. et al. 2004. Solution structure of the pseudo-5’ splice site of a retroviral splicing suppressor. RNA 10:1388–1398.

    PubMed  CAS  Google Scholar 

  • Chi, Y., Diaz-Griffero, F., Wang, C. et al. 2002. An NF-kappaB-dependent survival pathway protects against cell death induced by TVB receptors for avian leukosis viruses. J. Virol. 76:5581–5587.

    PubMed  CAS  Google Scholar 

  • Clurman, B. E., WS, Hayward. 1989. Multiple proto-oncogene activations in avian leukosis virus-induced lymphomas: evidence for stage-specific events. Mol. Cell. Biol. 9:2657–2664.

    PubMed  CAS  Google Scholar 

  • Costinean, S., Sandhu, S. K., Pedersen, I. M. et al. 2009. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein (β) are targeted by miR-155 in B cells of Eμ-miR-155 transgenic mice. Blood 114:1374–1382.

    PubMed  CAS  Google Scholar 

  • Costinean, S., Zanesi, N., Pekarsky, Y. et al. 2006. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc. Natl. Acad. Sci. U S A 103:7024–7029.

    PubMed  CAS  Google Scholar 

  • Cui, J. W., Li, Y. J., Sarkar, A. et al. 2007. Retroviral insertional activation of the Fli-3 locus in erhthroleukemias encoding a cluster of microRNAs that convert Epo-induced differentiation to proliferation. Blood 110:2631–2640.

    PubMed  CAS  Google Scholar 

  • Dabrowska, M. J., Dybkaer, K., Johnsen, H. E. et al. 2009. Loss of microRNA targets In the 3’ untranslated region as a mechanism of retroviral insertional activation of growth factor independence 1. J. Virol. 83:8051–8061.

    PubMed  CAS  Google Scholar 

  • Duesberg, P. H., and Vogt, P. K. 1970. Differences between the ribonucleic acids of transforming and nontransforming avian tumor viruses. Proc. Natl. Acad. Sci. U S A 67:1673–1680.

    PubMed  CAS  Google Scholar 

  • Eis, P. S., Tam, W., Sun, L. et al. 2005. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. U S A 102:3627–3632.

    PubMed  CAS  Google Scholar 

  • Ellerman, V., and Bang, O. 1908. Experimentelle leukamie bei huhnren. Zentralblatt Bakt. Parisite. Infekt. Hygiene 46:595–609.

    Google Scholar 

  • Fogel, B. L., McNally, L. M., and McNally, M. T. 2002. Efficient polyadenylation of Rous sarcoma virus RNA requires the negative regulator of splicing element. Nucleic Acids Res. 30:810–817.

    PubMed  CAS  Google Scholar 

  • Fung, Y. K., Crittenden, L. B., Kung, H. J. 1982. Orientation and position of avian leukosis virus DNA relative to the cellular oncogene c-Myc in B-lymphoma tumors of highly susceptible 15I5 X 7(2) chickens. J. Virol. 44:742–746.

    PubMed  CAS  Google Scholar 

  • Georgantas, R. W. I. I. I., Hildreth, R., Morisot, S. et al. 2007. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: A circuit diagram of differentiation control. Proc. Natl. Acad. Sci. U S A 104:2750–2755.

    PubMed  CAS  Google Scholar 

  • Giles, K. E., and Beemon, K. L. 2005. Retroviral splicing suppressor sequesters a 3’ splice site in a 50S aberrant splicing complex. Mol. Cell. Biol. 25:4397–4405.

    PubMed  CAS  Google Scholar 

  • Gilmore, T. D., Kalaitzidis, D., Liang, M. C. et al. 2004. The c-Rel transcriptiona factor and B-cell proliferation: a deal with the devil. Oncogene 23:2275–2286.

    PubMed  CAS  Google Scholar 

  • Girard, L., Hanna, Z., Beaulieu, N. et al. 1996. Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev. 10:1930–1944.

    PubMed  CAS  Google Scholar 

  • Gironella, M., Seux, M., Xie, M. J. et al. 2007. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc. Natl. Acad. Sci. U S A 104:16170–16175.

    PubMed  CAS  Google Scholar 

  • Gontarek, R. R., McNally, M. T., Beemon, K. 1993. Mutation of an RSV intronic element abolishes both U11/U12 snRNP binding and negative regulation of splicing. Genes Dev. 7:1926–1936.

    PubMed  CAS  Google Scholar 

  • Goodenow, M. M., and Hayward, W. S. 1987. 5’ long terminal repeats of Myc-associated proviruses appear structurally intact but are functionally impaired in tumors induced by avian leukosis viruses. J. Virol. 61:2489–2498.

    PubMed  CAS  Google Scholar 

  • Gottwein, E., Mukherjee, N., Sachse, C. et al. 2007. A viral microRNA functions as an orthologue of cellular miR-155. Nature 450:1096–1099.

    PubMed  CAS  Google Scholar 

  • Griffiths-Jones, S., Grocock, R. J., van Dongen, S. et al. 2006. XmiRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34:140–144.

    Google Scholar 

  • Grimson, A., Fahr, K. K., Johnston, W. K. et al. 2007. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell. 27:91–105.

    PubMed  CAS  Google Scholar 

  • Haasch, D., Chen, Y. W., Reilly, R. M. et al. 2002. T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the proto-oncogene, BIC. Cellular Immunology 217:78–86.

    PubMed  CAS  Google Scholar 

  • Hayward, W. S., Neel, B., Astrin, S. M. 1981. Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290:475–480.

    PubMed  CAS  Google Scholar 

  • Hibbert, C. S., Gontarek, R. R., Beemon, K. L. 1999. Role of overlapping. U1 and U11 5’ splice site sequences in a negative regulator of splicing. RNA 5:333–343.

    PubMed  CAS  Google Scholar 

  • Hunter, T., and Sefton, B. M. 1980. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl. Acad. Sci. U S A 77:1311–1315.

    PubMed  CAS  Google Scholar 

  • Igarashi, K., and Sun, J. 2006. The heme-BACH1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxid. Redox Signal. 8:107–118.

    PubMed  CAS  Google Scholar 

  • Iorio, M. V., Ferracin, M., Liu, C. G. et al. 2005. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65:7065–7070.

    PubMed  CAS  Google Scholar 

  • Jiang, W., Kanter, M. R., Dunkel, I. et al. 1997. Minimal truncation of the c-Myb gene product in rapid-onset B-cell lymphoma. J. Virol. 71:6526–6533.

    PubMed  CAS  Google Scholar 

  • Jung, J., T-g, K. i. m., Lyons, G. E. et al. 2005. Jumonji Regulates Cardiomyocyte Proliferation via Interaction with Retinoblastoma Protein. J. Biol. Chem. 280:30916–30923.

    PubMed  CAS  Google Scholar 

  • Kanter, M. R., Smith, R. E., Hayward, W. S. 1988. Rapid induction of B-cell lymphomas: insertional activation of c-Myb by avian leukosis virus. J. Virol. 62:1423–1432.

    PubMed  CAS  Google Scholar 

  • Kent, O. A., and Mendell, J. T. 2006. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25:6188–6196.

    PubMed  CAS  Google Scholar 

  • Kim, T. G., Kraus, J. C., Chen, J. et al. 2003. JUMONJI, a Critical Factor for Cardiac Development, Functions as a Transcriptional Repressor. J. Biol. Chem. 278:42247–42255.

    PubMed  CAS  Google Scholar 

  • Klein, G. 1983. Specific chromosomal translocations and the genesis of B-cell derived tumors in mice and men. Cell 32:311–315.

    PubMed  CAS  Google Scholar 

  • Kluiver, J., Poppema, S., deJong, D. et al. 2005. BIC and miR155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol. 207:243–249.

    PubMed  CAS  Google Scholar 

  • Kluiver, J., van den Berg, A., de Jong, D. et al. 2006. Regulation of pri-microRNA BIC transcription and processing in Burkitt lymphoma. Oncogene 26:3769–3776.

    PubMed  Google Scholar 

  • Kortschak, R. D., Tucker, P. W., Saint, R. 2000. ARID proteins come in from the desert. Trends in Biochemical Sciences 25:294–299.

    PubMed  CAS  Google Scholar 

  • Lagos-Quintana, M., Rauhut, R., Lendeckel, W. et al. 2001. Identification of novel genes coding for small expressed RNAs. Science 294:853–858.

    PubMed  CAS  Google Scholar 

  • Lagos-Quintana, M., Rauhut, R., Yalcin, A. et al. 2002. Identification of tissue-specific microRNAs from mouse. Current Biology 12:735–739.

    PubMed  CAS  Google Scholar 

  • Landais, S., Landry, S., Legault, P. et al. 2007. Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res. 67:5699–5707.

    PubMed  CAS  Google Scholar 

  • Le Douarin, N. M., Houssaint, E., Jotereau, F. 1977. Differentiation of the primary lymphoid organs in avian embryos: origin and homing of the lymphoid stem cells. In Avian immunology, ed. A. A. Benedict, p. 29–37. New York: Plenum Press

    Google Scholar 

  • Lee, Y., Song, A. J., Baker, R. et al. 2000. Jumonji, a Nuclear Protein That Is Necessary for Normal Heart Development. Circ. Res. 86:932–938.

    PubMed  CAS  Google Scholar 

  • Lewis, B. P., Burge, C. B., Bartel, D. P. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are MicroRNA targets. Cell 120:15–20.

    PubMed  CAS  Google Scholar 

  • Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W. et al. 2003. Prediction of mammalian MicroRNA targets. Cell 115:787–798.

    PubMed  CAS  Google Scholar 

  • Linial, M., and Groudine, M. 1985. Transcription of three c-Myc exons is enhanced in chicken bursal lymphoma cell lines. Proc. Natl. Acad. Sci. U S A 82:53–57.

    PubMed  CAS  Google Scholar 

  • Liu, X., Rapp, N., Deans, R. et al. 2000. Molecular cloning and chromosomal mapping of a candidate cytokine gene selectively expressed in human CD34+ cells. Genomics 65:283–292.

    PubMed  CAS  Google Scholar 

  • Lu, F., Weidmer, A., Liu, C. G. et al. 2008. Epstein-Barr virus-induced miR-155 attenuates NF-kappaB signaling and stabilizes latent virus persistence. J. Virol. 82:10436–10443.

    PubMed  CAS  Google Scholar 

  • Lum, A. M., Wang, B. B., Li, L. et al. 2007. Retroviral activation of the mir-106a microRNA cistron in T lymphoma. Retrovirology 4:5.

    PubMed  Google Scholar 

  • Maciolek, N. L., and McNally, M. T. 2007. Serine/Arginine-rich proteins contribute to negative regulator of splicing element-stimulated polyadenylation in Rous Sarcoma Virus. J. Virol. 81:11208–11217.

    PubMed  CAS  Google Scholar 

  • Maeda, N., Fan, H., Yoshikai, Y. 2008. Oncogenesis by retroviruses: old and new paradigms. Rev. Med. Virol. 18:387–405.

    PubMed  CAS  Google Scholar 

  • Maroney, P. A., Yu, Y., Fisher, J. et al. 2006. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat. Struct. Mol. Biol. 13:1102–1107.

    PubMed  CAS  Google Scholar 

  • Martin, G. S. 2001. The hunting of the Src. Nature. Rev. Mol. Cell. Biol. 2:467–475.

    CAS  Google Scholar 

  • Martin, G. S. 2004. The road to Src.. Oncogene 23:7910–7917.

    PubMed  CAS  Google Scholar 

  • Martin, M. M., Buckenberger, J. A., Jiang, J. et al. 2007. The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microrna-155 binding. J. Biol. Chem. 282:24262–24269.

    PubMed  CAS  Google Scholar 

  • Martin, M. M., Lee, E. J., Buckenberger, J. A. et al. 2006. MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J. Biol. Chem. 281:18277–18284.

    PubMed  CAS  Google Scholar 

  • Matsuoka, M., and Green, P. L. 2009. The HBZ gene, a key player in HTLV-I pathogenesis. Retrovirology 6:71.

    PubMed  Google Scholar 

  • Mayr, C., and Bartel, D. P. 2009. Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138:673–684.

    PubMed  CAS  Google Scholar 

  • McAllister, S. C., Hansen, S. G., Ruhl, R. A. et al. 2004. Kaposi sarcoma-associated herpesvirus (KSHV) induces heme oxygenase-1 expression and activity in KSHV-infected endothelial cells. Blood 103:3465–3473.

    PubMed  CAS  Google Scholar 

  • McNally, M. T., and Beemon, K. L. 1992. Intronic sequences and 3’ splice sites control Rous sarcoma virus RNA splicing. J. Virol. 66:6–11.

    PubMed  CAS  Google Scholar 

  • McNally, M. T., Gontarek, R. R., Beemon, K. L. 1991. Characterization of Rous sarcoma virus intronic sequences that negatively regulate splicing. Virology 185:99–108.

    PubMed  CAS  Google Scholar 

  • Miller, J. T., and Stoltzfus, C. M. 1992. Two distant upstream regions containing cis-acting signals regulating splicing facilitate 3’-end processing of avian sarcoma virus RNA. J. Virol. 66:4242–4251.

    PubMed  CAS  Google Scholar 

  • Morgan, R., Anderson, A., Bernberg, E. et al. 2008. Sequence conservation and differential expression of Marek’s disease virus microRNAs. J. Virol. 82:12213–12220.

    PubMed  CAS  Google Scholar 

  • Neel, B. G., Hayward, W. S., Robinson, H. L. et al. 1981. Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: oncogenesis by promoter insertion. Cell 23:323–334.

    PubMed  CAS  Google Scholar 

  • Neel, B. G., Jhanwar, S. C., Chaganti, R. S. et al. 1982. Two human c-onc genes are located on the long arm of chromosome 8. Proc. Natl. Acad. Sci. U S A 79:7842–7846.

    PubMed  CAS  Google Scholar 

  • Neil, J. C., and Stewart, M. A. 2009. Retroviruses as tools to identify oncogenes and tumor suppressor genes. In Retroviruses and Insights into Cancer, ed. J. Dudley, New York: Springer.

    Google Scholar 

  • Neiman, P. E., Grbic, J. J., Polony, T. S. et al. 2003. Functional genomic analysis reveals distinct neoplastic phenotypes associated with c-Myb mutation in the bursa of Fabricius. Oncogene 22:1073–1086.

    PubMed  CAS  Google Scholar 

  • O’Connell, R. M., Taganov, K. D., Boldin, M. P. et al. 2007. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl. Acad. Sci. U S A 104:1604–1609.

    PubMed  Google Scholar 

  • O’Connell, R. M., Chaudhuri, A. A., Rao, D. S. et al. 2009. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc. Natl. Acad. Sci. 106:7113–7118.

    PubMed  Google Scholar 

  • O’Sullivan, C. T., Polony, T. S., Paca, R. E. et al. 2002. Rous sarcoma virus negative regulator of splicing selectively suppresses Src mRNA splicing and promotes polyadenylation. Virology 302:405–412.

    PubMed  Google Scholar 

  • Paca, R. E., Hibbert, C. S., O’Sullivan, C. T. et al. 2001. Retroviral splicing suppressor requires three nonconsensus uridines in a 5’ splice site-like sequence. J. Virol. 75:7763–7768.

    PubMed  CAS  Google Scholar 

  • Payne, G. S., Courtneidge, S. A., Crittenden, L. B. et al. 1981. Analysis of avian leukosis virus DNA and RNA in bursal tumors: viral gene expression is not required for maintenance of the tumor state. Cell 23:311–322.

    PubMed  CAS  Google Scholar 

  • Payne, G. S., Bishop, J. M., Varmus, H. E. 1982. Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature 295:209–214.

    PubMed  CAS  Google Scholar 

  • Pizer, E., and Humphries, E. H. 1989. RAV-1insertional mutagenesis: disruption of the c-Myb locus and development of avian B-cell lymphomas. J. Virol. 63:1630–1640.

    PubMed  CAS  Google Scholar 

  • Pizer E., Baba T., Humphries E. 1992. Activation of the c-Myb locus is insufficient for the rapid induction of disseminated avian B-cell lymphoma. J. Virol. 66:512–523.

    PubMed  CAS  Google Scholar 

  • Polony, T. S., Bowers, S. J., Neiman, P. E. et al. 2003. Silent point mutation in an avian retrovirus RNA processing element promotes c-Myb-associated short-latency lymphomas. J. Virol. 77:9378–9387.

    PubMed  CAS  Google Scholar 

  • Quackenbush, S. 2009. Chapter Title. In Retroviruses and Insights into Cancer, ed. J. Dudley, New York: Springer (in press).

    Google Scholar 

  • Rehmsmeier, M., Steffen, P., Höchsmann, M. et al. 2004. Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517.

    PubMed  CAS  Google Scholar 

  • Rodriguez, A., Vigorito, E., Clare, S. et al. 2007. Requirement of bic/microRNA-155 for normal immune function. Science 316:608–611.

    PubMed  CAS  Google Scholar 

  • Rosenberg, N., and Jolicoeur, P. 1997. Retroviral Pathogenesis In Retroviruses, eds. J. M. CoffinHughesS. H.VarmusH. E, Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Rous, P. 1910. A transmissible avian neoplasm (sarcoma of the common fowl). J. Exp. Med. 12:696–705.

    PubMed  CAS  Google Scholar 

  • Ruscetti, S. K., and Cmarik, J. L. 2009. Deregulation of Signal Transduction Pathways by Oncogenic Retroviruses. In Retroviruses and Insights into Cancer, ed.J. Dudley, New York: Springer (in press).

    Google Scholar 

  • Sefton, B. M., Hunter, T., Beemon, K. L. et al. 1980. Evidence that the phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell 20:807–816.

    PubMed  CAS  Google Scholar 

  • Shalloway, D., Zelenetz, A. D., Cooper, G. M. 1981. Molecular cloning and characterization of the chicken gene homologous to the transforming gene of Rous sarcoma virus. Cell 24:531–541.

    PubMed  CAS  Google Scholar 

  • Shay, J. W., and Bacchetti, S. 1997. A survey of telomerase activity in human cancer. European Journal of Cancer 33:787–791.

    PubMed  CAS  Google Scholar 

  • Shirato, H. S., Ogawa, K., Nakajima, M. et al. 2009. A Jumonji (Jarid2) protein complex represses cyclin. D1 expression by methylation of histone H3-K9. J. Biol. Chem. 284:733–739.

    PubMed  CAS  Google Scholar 

  • Simon, M. C., Neckameyer, W. S., Hayward, W. S. et al. 1987. Genetic determinants of neoplastic diseases induced by a subgroup F avian leukosis virus. J. Virol. 61:1203–1212.

    PubMed  CAS  Google Scholar 

  • Skalsky, R. L., Samols, M. A., Plaisance, K. B. et al. 2007. Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. J. Virol. 81:12836–12845.

    PubMed  CAS  Google Scholar 

  • Smith, M. R., Smith, R. E., Dunkel, I. et al. 1997. Genetic determinant of rapid-onset B-cell lymphoma by avian leukosis virus. J. Virol. 71:6534–6540.

    PubMed  CAS  Google Scholar 

  • Stehelin, D., Varmus, H. E., Bishop, J. M. et al. 1976. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170–173.

    PubMed  CAS  Google Scholar 

  • Takeuchi, T., Yamazaki, Y., Katoh-Fukui, Y. et al. 1995. Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev. 9:1211–1222.

    PubMed  CAS  Google Scholar 

  • Takeya, T., and Hanafusa, H. 1983. Structure and sequence of the cellular gene homologous to the RSV Src gene and the mechanism for generating the transforming viru0073. Cell 32:881–890.

    PubMed  CAS  Google Scholar 

  • Tam, W. 2001. Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. Gene 274:157–167.

    PubMed  CAS  Google Scholar 

  • Tam, W., Ben-Yehuda, D., Hayward, W. S. 1997. Bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol. Cell. Biol. 17:1490–1502.

    PubMed  CAS  Google Scholar 

  • Tam, W., and Dahlberg, J. E. 2006. miR-155/BIC as an oncogenic microRNA. Genes Chromosomes Cancer 45:211–212.

    PubMed  CAS  Google Scholar 

  • Tam, W., Hughes, S. H., Hayward, W. S. et al. 2002. Avian bic, a gene isolated from a common retroviral site in avian leukosis virus-induced lymphomas that encodes a noncoding RNA, cooperates with c-Myc in lymphomagenesis and erythroleukemogenesis J. Virol. 76:4275–4286.

    PubMed  CAS  Google Scholar 

  • Taub, R., Kirsch, I., Morton, C. et al. 1982. Translocation of the c-Myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc. Natl. Acad. Sci. U S A 79:7837–7841.

    PubMed  CAS  Google Scholar 

  • Thai, T. H., Calado, D. P., Casola, S. et al. 2007. Regulation of the germinal center response by microRNA-155. Science 316:604–608.

    PubMed  CAS  Google Scholar 

  • Tili, E., Michaille, J. J., Cimino, A. et al. 2007. Modulation of miR-155 and miR-125b levels following Lipopolysaccharide/TNF-{alpha} stimulation and their possible roles in regulating the response to endotoxin shock. J. Immunol. 179:5082–5089.

    PubMed  CAS  Google Scholar 

  • Toyoda, M., Kojima, M., Takeuchi, T. 2000. Jumonji is a nuclear protein that participates in the negative regulation of cell growth. Biochem. Biophys. Res. Comm. 274:332–336.

    PubMed  CAS  Google Scholar 

  • van den Berg, A., Kroesen, B. J., Kooistra, K. et al. 2003. High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes, Chromosomes and Cancer 37:20–28.

    CAS  Google Scholar 

  • van Lohuizen, M., Verbeek, S., Scheijen, B. et al. 1991. Identificaation of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65:737–752.

    PubMed  CAS  Google Scholar 

  • Vasudevan, S., Tong, Y., Steitz, J. A. 2007. Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934.

    PubMed  CAS  Google Scholar 

  • Volinia, S., Calin, G. A., Liu, C. G. et al. 2006. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U S A 103:2257–2261.

    PubMed  CAS  Google Scholar 

  • Wang, C. L., Wang, B. B., Bartha, G. et al. 2006. Activation of an oncogenic microRNA cistron by provirus integration. Proc. Natl. Acad. Sci. U S A 103:18680–18684.

    PubMed  CAS  Google Scholar 

  • Wang, L. H., Duesberg, P., Beemon, K. L. et al. 1975. Mapping RNase T1-resistant oligonucleotides of avian tumor virus RNAs: Sarcoma-specific oligonucleotides are near the poly(A) end and oligonucleotides common to sarcoma and transformation-defective viruses are at the poly(A) end. J. Virol. 16:1051–1070.

    PubMed  CAS  Google Scholar 

  • Watson, R. J. 1988. A transcriptional arrest mechanism involved in controlling constitutive levels of mouse c-myb mRNA. Oncogene 2:267–272.

    PubMed  CAS  Google Scholar 

  • Weller, S. K., and Temin, H. M. 1981. Cell killing by avian leukosis viruses. J. Virol. 39:713–721.

    PubMed  CAS  Google Scholar 

  • Wilusz, J. E., and Beemon, K. L. 2006. The Negative Regulator of Splicing element of Rous sarcoma virus directly regulates polyadenylation at the 3’ LTR. J. Virol. 80:9634–9640.

    PubMed  CAS  Google Scholar 

  • Yang, F., Xian, R. R., Li, Y. et al. 2007. Telomerase reverase transcriptase expression elevated by avian leukosis virus integration in B-cell lymphomas. Proc. Natl. Acad. Sci. U S A 104:18952–18957.

    PubMed  CAS  Google Scholar 

  • Yin, Q., McBride, J., Fewell, C. et al. 2008. MicroRNA-155 is an Epstein-Barr virus-induced gene that modulates Epstein-Barr virus-regulated gene expression pathways. J. Virol. 82:5295–5306.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the Beemon lab was supported by a grant from the National Cancer Institute. We acknowledge the contributions of many present and former lab members. Unpublished work was performed by Jason Weil; Johanna Withers; George Dy; Mohan Bolisetty; Feng Yang; Amanda Reider and Saranya Sasidharan. We would also like to thank our collaborators, especially Bill Hayward, Paul Neiman, Robin Morgan, and Yun-Xing Wang. In addition, we thank Jason Weil and Johanna Withers for review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen L. Beemon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Beemon, K.L., Bolisetty, M. (2010). Mechanisms of Oncogenesis by Retroviruses. In: Dudley, J. (eds) Retroviruses and Insights into Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09581-3_2

Download citation

Publish with us

Policies and ethics