Skip to main content

DNA Methylation in Colorectal Cancer: Multiple Facets of Tumorigenesis

  • Chapter
Genetics of Colorectal Cancer

Part of the book series: Cancer Genetics ((CANGENETICS))

  • 1163 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaltonen, L. A., P. Peltomaki, et al. (1993). “Clues to the pathogenesis of familial colorectal cancer.” Science 260(5109): 812–6.

    Article  PubMed  CAS  Google Scholar 

  • Ahuja, N. and J. P. Issa (2000). “Aging, methylation and cancer.” Histol Histopathol 15(3): 835–42.

    PubMed  CAS  Google Scholar 

  • Ahuja, N., Q. Li, et al. (1998). “Aging and DNA methylation in colorectal mucosa and cancer.” Cancer Res 58(23): 5489–94.

    PubMed  CAS  Google Scholar 

  • Akiyama, Y., N. Watkins, et al. (2003). “GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer.” Mol Cell Biol 23(23): 8429–39.

    Article  PubMed  CAS  Google Scholar 

  • An, C., I. S. Choi, et al. (2005). “Prognostic significance of CpG island methylator phenotype and microsatellite instability in gastric carcinoma.” Clin Cancer Res 11(2 Pt 1): 656–63.

    PubMed  CAS  Google Scholar 

  • Anacleto, C., A. M. Leopoldino, et al. (2005). “Colorectal cancer “methylator phenotype”: fact or artifact?” Neoplasia 7(4): 331–5.

    Article  PubMed  CAS  Google Scholar 

  • Bariol, C., C. Suter, et al. (2003). “The relationship between hypomethylation and CpG island methylation in colorectal neoplasia.” Am J Pathol 162(4): 1361–71.

    Article  PubMed  CAS  Google Scholar 

  • Baumann, S., G. Keller, et al. (2006). “The prognostic impact of O6-Methylguanine-DNA Methyltransferase (MGMT) promoter hypermethylation in esophageal adenocarcinoma.” Int J Cancer 119(2): 264–8.

    Article  PubMed  CAS  Google Scholar 

  • Baylin, S. B. and J. E. Ohm (2006). “Epigenetic gene silencing in cancer–a mechanism for early oncogenic pathway addiction?” Nat Rev Cancer 6(2): 107–16.

    Article  PubMed  CAS  Google Scholar 

  • Baylin, S. B., J. W. Hoppener, et al. (1986). “DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas.” Cancer Res 46(6): 2917–22.

    PubMed  CAS  Google Scholar 

  • Beach, R., A. O. Chan, et al. (2005). “BRAF mutations in aberrant crypt foci and hyperplastic polyposis.” Am J Pathol 166(4): 1069–75.

    Article  PubMed  CAS  Google Scholar 

  • Beke, L., M. Nuytten, et al. (2007). “The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2.” Oncogene 26: 4590–5.

    Article  PubMed  CAS  Google Scholar 

  • Bell, A. C. and G. Felsenfeld (2000). “Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene.” Nature 405(6785): 482–5.

    Article  PubMed  CAS  Google Scholar 

  • Bell, A. C., A. G. West, et al. (2001). “Insulators and boundaries: versatile regulatory elements in the eukaryotic.” Science 291(5503): 447–50.

    Article  PubMed  CAS  Google Scholar 

  • Belshaw, N. J., G. O. Elliott, et al. (2004). “Use of DNA from human stools to detect aberrant CpG island methylation of genes implicated in colorectal cancer.” Cancer Epidemiol Biomarkers Prev 13(9): 1495–501.

    PubMed  CAS  Google Scholar 

  • Bird, A. P. (1986). “CpG-rich islands and the function of DNA methylation.” Nature 321 (6067): 209–13.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, L. A., K. Plath, et al. (2006). “Polycomb complexes repress developmental regulators in murine embryonic stem cells.” Nature 441(7091): 349–53.

    Article  PubMed  CAS  Google Scholar 

  • Bryant, R. J., N. A. Cross, et al. (2007). “EZH2 promotes proliferation and invasiveness of prostate cancer cells.” Prostate 67(5): 547–56.

    Article  PubMed  CAS  Google Scholar 

  • Butler, M. G. (2002). “Imprinting disorders: non-Mendelian mechanisms affecting growth.” J Pediatr Endocrinol Metab 15 Suppl 5: 1279–88.

    PubMed  CAS  Google Scholar 

  • Chan, A. O., R. R. Broaddus, et al. (2002a). “CpG island methylation in aberrant crypt foci of the colorectum.” Am J Pathol 160(5): 1823–30.

    Article  CAS  Google Scholar 

  • Chan, A. O., J. P. Issa, et al. (2002b). “Concordant CpG island methylation in hyperplastic polyposis.” Am J Pathol 160(2): 529–36.

    Article  CAS  Google Scholar 

  • Chan, T. L., S. T. Yuen, et al. (2006). “Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer.” Nat Genet 38(10): 1178–83.

    Article  PubMed  CAS  Google Scholar 

  • Chang, M. S., H. Uozaki, et al. (2006). “CpG island methylation status in gastric carcinoma with and without infection of Epstein–Barr virus.” Clin Cancer Res 12(10): 2995–3002.

    Article  PubMed  CAS  Google Scholar 

  • Chong, S., N. A. Youngson, et al. (2007). “Heritable germline epimutation is not the same as transgenerational epigenetic inheritance.” Nat Genet 39(5): 574–5; author reply 575–6.

    Article  PubMed  CAS  Google Scholar 

  • Clement, G., R. Braunschweig, et al. (2006). “Methylation of APC, TIMP3, and TERT: a new predictive marker to distinguish Barrett's oesophagus patients at risk for malignant transformation.” J Pathol 208(1): 100–7.

    Article  PubMed  CAS  Google Scholar 

  • Costa, V. L., R. Henrique, et al. (2007). “Epigenetic markers for molecular detection of prostate cancer.” Dis Markers 23(1–2): 31–41.

    PubMed  CAS  Google Scholar 

  • Cui, H., P. Onyango, et al. (2002). “Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2.” Cancer Res 62(22): 6442–6.

    PubMed  CAS  Google Scholar 

  • Cui, H., M. Cruz-Correa, et al. (2003). “Loss of IGF2 imprinting: a potential marker of colorectal cancer risk.” Science 299(5613): 1753–5.

    Article  PubMed  CAS  Google Scholar 

  • Das, R., N. Dimitrova, et al. (2006). “Computational prediction of methylation status in human genomic sequences.” Proc Natl Acad Sci USA 103(28): 10713–6.

    Article  PubMed  CAS  Google Scholar 

  • Delaval, K., A. Wagschal, et al. (2006). “Epigenetic deregulation of imprinting in congenital diseases of aberrant growth.” Bioessays 28(5): 453–9.

    Article  PubMed  CAS  Google Scholar 

  • Diala, E. S. and R. M. Hoffman (1982). “Hypomethylation of HeLa cell DNA and the absence of 5-methylcytosine in SV40 and adenovirus (type 2) DNA: analysis by HPLC.” Biochem Biophys Res Commun 107: 19–26.

    Article  PubMed  CAS  Google Scholar 

  • Diala, E. S., M. S. Cheah, et al. (1983). “Extent of DNA methylation in human tumor cells.” J Natl Cancer Inst 71: 755–64.

    PubMed  CAS  Google Scholar 

  • Douglas, J. A., S. B. Gruber, et al. (2005). “History and molecular genetics of Lynch syndrome in family G: a century later.” JAMA 294(17): 2195–202.

    Article  PubMed  CAS  Google Scholar 

  • Ducasse, M. and M. A. Brown (2006). “Epigenetic aberrations and cancer.” Mol Cancer 5: 60.

    Article  PubMed  CAS  Google Scholar 

  • Eads, C. A., K. D. Danenberg, et al. (1999). “CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression.” Cancer Res 59(10): 2302–6.

    PubMed  CAS  Google Scholar 

  • Eden, A., F. Gaudet, et al. (2003). “Chromosomal instability and tumors promoted by DNA hypomethylation.” Science 300(5618): 455.

    Article  PubMed  CAS  Google Scholar 

  • Englander, E. W., A. P. Wolffe, et al. (1993). “Nucleosome interactions with a human Alu element. Transcriptional repression and effects of template methylation.” J Biol Chem 268(26): 19565–73.

    PubMed  CAS  Google Scholar 

  • Esteller, M., M. F. Fraga, et al. (2001). “DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis.” Hum Mol Genet 10(26): 3001–7.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg, A. P. (2007). “Phenotypic plasticity and the epigenetics of human disease.” Nature 447(7143): 433–40.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg, A. P. and B. Vogelstein (1983a). “Hypomethylation distinguishes genes of some human cancers from their normal counterparts.” Nature 301(5895): 89–92.

    Article  CAS  Google Scholar 

  • Feinberg, A. P. and B. Vogelstein (1983b). “Hypomethylation of ras oncogenes in primary human cancers.” Biochem Biophys Res Commun 111(1): 47–54.

    Article  CAS  Google Scholar 

  • Feng, Q., S. E. Hawes, et al. (2007). “Promoter hypermethylation of tumor suppressor genes in urine from patients with cervical neoplasia.” Cancer Epidemiol Biomarkers Prev 16(6): 1178–84.

    Article  PubMed  CAS  Google Scholar 

  • Fiskus, W., M. Pranpat, et al. (2006). “Histone deacetylase inhibitors deplete enhancer of zeste 2 and associated polycomb repressive complex 2 proteins in human acute leukemia cells.” Mol Cancer Ther 5(12): 3096–104.

    Article  PubMed  CAS  Google Scholar 

  • Flatau, E., E. Bogenmann, et al. (1983). “Variable 5-methylcytosine levels in human tumor cell lines and fresh pediatric tumor explants.” Cancer Res 43: 4901–5.

    PubMed  CAS  Google Scholar 

  • Frazier, M. L., L. Xi, et al. (2003). “Association of the CpG island methylator phenotype with family history of cancer in patients with colorectal cancer.” Cancer Res 63(16): 4805–8.

    PubMed  CAS  Google Scholar 

  • Frigola, J., J. Song, et al. (2006). “Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band.” Nat Genet 38(5): 540–9.

    Article  PubMed  CAS  Google Scholar 

  • Gama-Sosa, M. A., V. A. Slagel, et al. (1983). “The 5-methylcytosine content of DNA from human tumors.” Nucleic Acids Res 11: 6883–94.

    Article  Google Scholar 

  • Gaudet, F., J. G. Hodgson, et al. (2003). “Induction of tumors in mice by genomic hypomethylation.” Science 300(5618): 489–92.

    Article  PubMed  CAS  Google Scholar 

  • Gazzoli, I., M. Loda, et al. (2002). “A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmeth-ylated allele in the resulting microsatellite instability-high tumor.” Cancer Res 62(14): 3925–8.

    PubMed  CAS  Google Scholar 

  • Goelz, S. E., B. Vogelstein, et al. (1985). “Hypomethylation of DNA from benign and malignant human colon neoplasms.” Science 228(4696): 187–90.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, N. S. (2005). “Clinical significance of (sessile) serrated adenomas: another piece of the puzzle.” Am J Clin Pathol 123(3): 329–30.

    Article  PubMed  Google Scholar 

  • Goldstein, N. S., P. Bhanot, et al. (2003). “Hyperplastic-like colon polyps that preceded microsat-ellite-unstable adenocarcinomas.” Am J Clin Pathol 119(6): 778–96.

    Article  PubMed  Google Scholar 

  • Hamilton, J. P., F. Sato, et al. (2006). “Reprimo methylation is a potential biomarker of Barrett's-associated esophageal neoplastic progression.” Clin Cancer Res 12(22): 6637–42.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins, N. J. and R. L. Ward (2001). “Sporadic colorectal cancers with microsatellite instability and their possible origin in hyperplastic polyps and serrated adenomas.” J Natl Cancer Inst 93(17): 1307–13.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins, N. J., C. Bariol, et al. (2002). “The serrated neoplasia pathway.” Pathology 34(6): 548–55.

    PubMed  CAS  Google Scholar 

  • Hayslip, J. and A. Montero (2006). “Tumor suppressor gene methylation in follicular lymphoma: a comprehensive review.” Mol Cancer 5: 44.

    Article  PubMed  CAS  Google Scholar 

  • Herman, J. G., A. Merlo, et al. (1995). “Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers.” Cancer Res 55(20): 4525–30.

    PubMed  CAS  Google Scholar 

  • Herman, J. G., A. Umar, et al. (1998). “Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma.” Proc Natl Acad Sci USA 95(12): 6870–5.

    Article  PubMed  CAS  Google Scholar 

  • Hitchins, M., R. Williams, et al. (2005). “MLH1 germline epimutations as a factor in hereditary nonpolyposis colorectal cancer.” Gastroenterology 129(5): 1392–9.

    Article  PubMed  CAS  Google Scholar 

  • Hitchins, M. P., J. J. Wong, et al. (2007). “Inheritance of a cancer-associated MLH1 germ-line epimutation.” N Engl J Med 356(7): 697–705.

    Article  PubMed  CAS  Google Scholar 

  • Hochedlinger, K., R. Blelloch, et al. (2004). “Reprogramming of a melanoma genome by nuclear transplantation.” Genes Dev 18(15): 1875–85.

    Article  PubMed  CAS  Google Scholar 

  • Holliday, R. (1987). “The inheritance of epigenetic defects.” Science 238(4824): 163–70.

    Article  PubMed  CAS  Google Scholar 

  • Holm, T. M., L. Jackson-Grusby, et al. (2005). “Global loss of imprinting leads to widespread tumorigenesis in adult mice.” Cancer Cell 8(4): 275–85.

    Article  PubMed  CAS  Google Scholar 

  • Horsthemke, B. (2006). “Epimutations in human disease.” Curr Top Microbiol Immunol 310: 45–59.

    Article  PubMed  CAS  Google Scholar 

  • Iacopetta, B., W. Q. Li, et al. (2006). “BRAF mutation and gene methylation frequencies of colorectal tumors with microsatellite instability increase markedly with patient age.” Gut 55(8): 1213–4.

    Article  PubMed  CAS  Google Scholar 

  • Ionov, Y., M. A. Peinado, et al. (1993). “Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis.” Nature 363(6429): 558–61.

    Article  PubMed  CAS  Google Scholar 

  • Issa, J. P. (1999). “Aging, DNA methylation and cancer.” Crit Rev Oncol Hematol 32(1): 31–43.

    Article  PubMed  CAS  Google Scholar 

  • Issa, J. P. (2000). “CpG-island methylation in aging and cancer.” Curr Top Microbiol Immunol 249: 101–18.

    Article  PubMed  CAS  Google Scholar 

  • Issa, J. P. (2004). “CpG island methylator phenotype in cancer.” Nat Rev Cancer 4(12): 988–93.

    Article  PubMed  CAS  Google Scholar 

  • Issa, J. P., N. Ahuja, et al. (2001). “Accelerated age-related CpG island methylation in ulcerative colitis.” Cancer Res 61(9): 3573–7.

    PubMed  CAS  Google Scholar 

  • Issa, J. P., L. Shen, et al. (2005). “CIMP, at last.” Gastroenterology 129(3): 1121–4.

    Article  PubMed  CAS  Google Scholar 

  • Jackson-Grusby, L., C. Beard, et al. (2001). “Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation.” Nat Genet 27(1): 31–9.

    Article  CAS  Google Scholar 

  • Jaenisch, R. and A. Bird (2003). “Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals.” Nat Genet 33 Suppl: 245–54.

    Article  PubMed  CAS  Google Scholar 

  • Jass, J. R. (2001). “Serrated route to colorectal cancer: back street or super highway?” J Pathol 193(3): 283–5.

    Article  PubMed  CAS  Google Scholar 

  • Jass, J. R. (2003). “Hyperplastic-like polyps as precursors of microsatellite-unstable colorectal cancer.” Am J Clin Pathol 119(6): 773–5.

    Article  PubMed  Google Scholar 

  • Jass, J. R. (2004). “Hyperplastic polyps and colorectal cancer: is there a link?” Clin Gastroenterol Hepatol 2(1): 1–8.

    Article  PubMed  Google Scholar 

  • Jass, J. R., K. A. Do, et al. (1998). “Morphology of sporadic colorectal cancer with DNA replication errors.” Gut 42(5): 673–9.

    Article  PubMed  CAS  Google Scholar 

  • Jass, J. R., H. Iino, et al. (2000). “Neoplastic progression occurs through mutator pathways in hyperplastic polyposis of the colorectum.” Gut 47(1): 43–9.

    Article  PubMed  CAS  Google Scholar 

  • Jelinic, P. and P. Shaw (2007). “Loss of imprinting and cancer.” J Pathol 211(3): 261–8.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P. A. and P. W. Laird (1999). “Cancer epigenetics comes of age.” Nat Genet 21(2): 163–7.

    Article  PubMed  CAS  Google Scholar 

  • Kambara, T., L. A. Simms, et al. (2004). “BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum.” Gut 53(8): 1137–44.

    Article  PubMed  CAS  Google Scholar 

  • Kang, S., H. S. Kim, et al. (2007). “Inverse correlation between RASSF1A hypermethylation, KRAS and BRAF mutations in cervical adenocarcinoma.” Gynecol Oncol 105(3): 662–6.

    Article  PubMed  CAS  Google Scholar 

  • Karpf, A. R. and S. Matsui (2005). “Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells.” Cancer Res 65(19): 8635–9.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami, K., A. Ruszkiewicz, et al. (2006). “DNA hypermethylation in the normal colonic mucosa of patients with colorectal cancer.” Br J Cancer 94(4): 593–8.

    Article  PubMed  CAS  Google Scholar 

  • Keshet, I., Y. Schlesinger, et al. (2006). “Evidence for an instructive mechanism of de novo methylation in cancer cells.” Nat Genet 38(2): 149–53.

    Article  PubMed  CAS  Google Scholar 

  • Kleer, C. G., Q. Cao, et al. (2003). “EZH2 is a marker of aggressive breast cancer and promotes neo-plastic transformation of breast epithelial cells.” Proc Natl Acad Sci USA 100(20): 11606–11.

    Article  PubMed  CAS  Google Scholar 

  • Lagerstedt Robinson, K., T. Liu, et al. (2007). “Lynch syndrome (hereditary nonpolyposis color-ectal cancer) diagnostics.” J Natl Cancer Inst 99(4): 291–9.

    Article  PubMed  CAS  Google Scholar 

  • Laird, P. W. (2003). “The power and the promise of DNA methylation markers.” Nat Rev Cancer 3(4): 253–66.

    Article  PubMed  CAS  Google Scholar 

  • Laird, P. W. (2005). “Cancer epigenetics.” Hum Mol Genet 14 Spec No 1: R65–76.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T. I., R. G. Jenner, et al. (2006). “Control of developmental regulators by Polycomb in human embryonic stem cells.” Cell 125(2): 301–13.

    Article  PubMed  CAS  Google Scholar 

  • Lengauer, C., K. W. Kinzler, et al. (1997a). “DNA methylation and genetic instability in colorectal cancer cells.” Proc Natl Acad Sci USA 94(6): 2545–50.

    Article  CAS  Google Scholar 

  • Lengauer, C., K. W. Kinzler, et al. (1997b). “Genetic instability in colorectal cancers.” Nature 386(6625): 623–7.

    Article  CAS  Google Scholar 

  • Leung, S. Y., T. L. Chan, et al. (2007). “Reply to “Heritable germline epimutation is not the same as transgenerational epigenetic inheritance”.” Nat Genet 39(5): 576.

    Article  CAS  Google Scholar 

  • Li, S. C. and L. Burgart (2007). “Histopathology of serrated adenoma, its variants, and differentiation from conventional adenomatous and hyperplastic polyps.” Arch Pathol Lab Med 131(3): 440–5.

    PubMed  Google Scholar 

  • Lippman, Z. and R. Martienssen (2004). “The role of RNA interference in heterochromatic silencing.” Nature 431(7006): 364–70.

    Article  PubMed  CAS  Google Scholar 

  • Lu, C., T. Bonome, et al. (2007). “Gene alterations identified by expression profiling in tumor-associated endothelial cells from invasive ovarian carcinoma.” Cancer Res 67(4): 1757–68.

    Article  PubMed  CAS  Google Scholar 

  • Maenaka, S., T. Hikichi, et al. (2006). “Loss of imprinting in IGF2 in colorectal carcinoma assessed by microdissection.” Oncol Rep 15(4): 791–5.

    PubMed  CAS  Google Scholar 

  • Mancini-DiNardo, D., S. J. Steele, et al. (2003). “A differentially methylated region within the gene Kcnq1 functions as an imprinted promoter and silencer.” Hum Mol Genet 12(3): 283–94.

    Article  PubMed  CAS  Google Scholar 

  • Mancini-DiNardo, D., S. J. Steele, et al. (2006). “Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes.” Genes Dev 20(10): 1268–82.

    Article  CAS  Google Scholar 

  • Marker, P. C. (2007). “Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer Berezovska OP, Glinskii AB, Yang Z, Li XM, Hoffman RM, Glinsky G V, Translational and Functional Genomics Laboratory, Ordway Cancer Center, Ordway Research Institute, Inc., Center for Medical Sciences, Albany, NY.” Urol Oncol 25(3): 278–9.

    Article  CAS  Google Scholar 

  • Marsit, C. J., E. A. Houseman, et al. (2006). “Examination of a CpG island methylator phenotype and implications of methylation profiles in solid tumors.” Cancer Res 66(21): 10621–9.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki, K., G. Deng, et al. (2005). “The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer.” Clin Cancer Res 11(24 Pt 1): 8564–9.

    Article  PubMed  CAS  Google Scholar 

  • Mattioli, E., P. Vogiatzi, et al. (2007). “Immunohistochemical analysis of pRb2/p130, VEGF, EZH2, p53, p16(INK4A), p27(KIP1), p21(WAF1), Ki-67 expression patterns in gastric cancer.” J Cell Physiol 210(1): 183–91.

    Article  PubMed  CAS  Google Scholar 

  • McGivern, A., C. V. Wynter, et al. (2004). “Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer.” Fam Cancer 3(2): 101–7.

    Article  PubMed  CAS  Google Scholar 

  • Merlo, A., J. G. Herman, et al. (1995). “5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers.” Nat Med 1(7): 686–92.

    Article  PubMed  CAS  Google Scholar 

  • Minoo, P., J. R. Jass (2006). “Senescence and Serration: a new twist to an old tale.” J Pathol 210(2): 137–40.

    Article  PubMed  CAS  Google Scholar 

  • Minoo, P., K. Baker, et al. (2006). “Extensive DNA methylation in normal colorectal mucosa in hyperplastic polyposis.” Gut 55(10): 1467–74.

    Article  PubMed  CAS  Google Scholar 

  • Minoo, P., M. Moyer, et al. (2007). “Role of BRAF-V600E in the serrated pathway of colorectal tumorigenesis.” J Pathol 212(2): 124–33.

    Article  PubMed  CAS  Google Scholar 

  • Mintz, B. and K. Illmensee (1975). “Normal genetically mosaic mice produced from malignant teratocarcinoma cells.” Proc Natl Acad Sci USA 72(9): 3585–9.

    Article  PubMed  CAS  Google Scholar 

  • Miyakura, Y., K. Sugano, et al. (2004). “Extensive but hemiallelic methylation of the hMLH1 promoter region in early-onset sporadic colon cancers with microsatellite instability.” Clin Gastroenterol Hepatol 2(2): 147–56.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, H., R. B. Chadwick, et al. (2001a). “Loss of imprinting of the insulin-like growth factor II gene occurs by biallelic methylation in a core region of H19-associated CTCF-binding sites in colorectal cancer.” Proc Natl Acad Sci USA 98(2): 591–6.

    Article  CAS  Google Scholar 

  • Nakagawa, H., G. J. Nuovo, et al. (2001b). “Age-related hypermethylation of the 5′ region of MLH1 in normal colonic mucosa is associated with microsatellite-unstable colorectal cancer development.” Cancer Res 61: 6991–5.

    CAS  Google Scholar 

  • Ogino, S., M. Cantor, et al. (2006a). “CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies.” Gut 55(7): 1000–6.

    Article  CAS  Google Scholar 

  • Ogino, S., R. D. Odze, et al. (2006b). “Correlation of pathologic features with CpG island meth-ylator phenotype (CIMP) by quantitative DNA methylation analysis in colorectal carcinoma.” Am J Surg Pathol 30(9): 1175–83.

    Article  Google Scholar 

  • Ogino, S., T. Kawasaki, et al. (2007a). “Evaluation of markers for CpG Island Methylator Phenotype (CIMP) in colorectal cancer by a large population-based sample.” J Mol Diagn 9(3): 305–14.

    Article  CAS  Google Scholar 

  • Ogino, S., T. Kawasaki, et al. (2007b). “18q loss of heterozygosity in microsatellite stable colorectal cancer is correlated with CpG island methylator phenotype-negative (CIMP-0) and inversely with CIMP-low and CIMP-high.” BMC Cancer 7: 72.

    Article  CAS  Google Scholar 

  • Ohlsson, R. (2004). “Loss of IGF2 imprinting: mechanisms and consequences.” Novartis Found Symp 262: 108–21; discussion 121–4, 265–8.

    Article  PubMed  CAS  Google Scholar 

  • Ohm, J. E., K. M. McGarvey, et al. (2007). “A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing.” Nat Genet 39(2): 237–42.

    Article  PubMed  CAS  Google Scholar 

  • Ostertag, E. M. and H. H. Kazazian (2005). “Genetics: LINEs in mind.” Nature 435(7044): 890–1.

    Article  PubMed  CAS  Google Scholar 

  • Pao, M. M., G. Liang, et al. (2000). “DNA methylator and mismatch repair phenotypes are not mutually exclusive in colorectal cancer cell lines.” Oncogene 19: 943–52.

    Article  PubMed  CAS  Google Scholar 

  • Perri, F., R. Cotugno, et al. (2007). “Aberrant DNA methylation in non-neoplastic gastric mucosa of H. pylori infected patients and effect of eradication.” Am J Gastroenterol 102(11): 1361–71.

    Article  PubMed  CAS  Google Scholar 

  • Rashid, A. and J. P. Issa (2004). “CpG island methylation in gastroenterologic neoplasia: a maturing field.” Gastroenterology 127(5): 1578–88.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, K. D. (2001). “DNA methylation, methyltransferases, and cancer.” Oncogene 20(24): 3139–55.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, K. D., E. Uzvolgyi, et al. (1999). “The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors.” Nucleic Acids Res 27(11): 2291–8.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, J., J. Frigola, et al. (2006). “Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers.” Cancer Res 66(17): 8462–9468.

    Article  PubMed  CAS  Google Scholar 

  • Sakatani, T., A. Kaneda, et al. (2005). “Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice.” Science 307(5717): 1976–8.

    Article  PubMed  CAS  Google Scholar 

  • Samowitz, W. S., H. Albertsen, et al. (2005a). “Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer.” Gastroenterology 129(3): 837–45.

    Article  CAS  Google Scholar 

  • Samowitz, W. S., C. Sweeney, et al. (2005b). “Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers.” Cancer Res 65(14): 6063–9.

    Article  CAS  Google Scholar 

  • Samowitz, W. S., H. Albertsen, et al. (2006). “Association of smoking, CpG island methylator phenotype, and V600E BRAF mutations in colon cancer.” J Natl Cancer Inst 98(23): 1731–8.

    Article  PubMed  CAS  Google Scholar 

  • Santos-Reboucas, C. B. and M. M. Pimentel (2007). “Implication of abnormal epigenetic patterns for human diseases.” Eur J Hum Genet 15(1): 10–7.

    Article  PubMed  CAS  Google Scholar 

  • Sathyanarayana, U. G., A. Y. Moore, et al. (2007). “Sun exposure related methylation in malignant and non-malignant skin lesions.” Cancer Lett 245(1–2): 112–20.

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger, Y., R. Straussman, et al. (2007). “Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer.” Nat Genet 39(2): 232–6.

    Article  PubMed  CAS  Google Scholar 

  • Serman, A., M. Vlahovic, et al. (2006). “DNA methylation as a regulatory mechanism for gene expression in mammals.” Coll Antropol 30(3): 665–71.

    PubMed  CAS  Google Scholar 

  • Shames, D. S., J. D. Minna, et al. (2007). “DNA methylation in health, disease, and cancer.” Curr Mol Med 7(1): 85–102.

    Article  PubMed  CAS  Google Scholar 

  • Sharrard, R. M., J. A. Royds, et al. (1992). “Patterns of methylation of the c-myc gene in human colorectal cancer progression.” Br J Cancer 65(5): 667–72.

    Article  PubMed  CAS  Google Scholar 

  • Shen, L., N. Ahuja, et al. (2002). “DNA methylation and environmental exposures in human hepatocellular carcinoma.” J Natl Cancer Inst 94: 755–61.

    Article  PubMed  CAS  Google Scholar 

  • Shen, L., Y. Kondo, et al. (2005). “MGMT promoter methylation and field defect in sporadic colorectal cancer.” J Natl Cancer Inst 97(18): 1330–8.

    Article  PubMed  CAS  Google Scholar 

  • Shi, B., J. Liang, et al. (2007). “Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells.” Mol Cell Biol 27(14): 5105–19.

    Article  PubMed  CAS  Google Scholar 

  • Simms, L. A., T. T. Zou, et al. (1997). “Apparent protection from instability of repeat sequences in cancer-related genes in replication error positive gastrointestinal cancers.” Oncogene 14(21): 2613–8.

    Article  PubMed  CAS  Google Scholar 

  • Slattery, M. L., K. Curtin, et al. (2007). “Diet and lifestyle factor associations with CpG island methylator phenotype and BRAF mutations in colon cancer.” Int J Cancer 120(3): 656–63.

    Article  PubMed  CAS  Google Scholar 

  • Slattery, M. L., W. Samowitz, et al. (2004). “CYP1A1, cigarette smoking, and colon and rectal cancer.” Am J Epidemiol 160: 842–52.

    Article  Google Scholar 

  • Song, G. A., G. Deng, et al. (2005). “Mucinous carcinomas of the colorectum have distinct molecular genetic characteristics.” Int J Oncol 26(3): 745–50.

    PubMed  CAS  Google Scholar 

  • Squazzo, S. L., H. O'Geen, et al. (2006). “Suz12 binds to silenced regions of the genome in a cell-type-specific manner.” Genome Res 16(7): 890–900.

    Article  PubMed  CAS  Google Scholar 

  • Suter, C. M. and D. I. Martin (2007a). “Inherited epimutation or a haplotypic basis for the propensity to silence?” Nat Genet 39(5): 573; author reply 576.

    Article  CAS  Google Scholar 

  • Suter, C. M. and D. I. Martin (2007b). “Reply to “Heritable germline epimutation is not the same as transgenerational epigenetic inheritance”.” Nat Genet 39(5): 575–6.

    Article  CAS  Google Scholar 

  • Suter, C. M., D. I. Martin, et al. (2004). “Germline epimutation of MLH1 in individuals with multiple cancers.” Nat Genet 36(5): 497–501.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, M., H. Shigematsu, et al. (2005). “DNA methylation-associated inactivation of TGFbeta-related genes DRM/Gremlin, RUNX3, and HPP1 in human cancers.” Br J Cancer 93(9): 1029–37.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, M., H. Shigematsu, et al. (2006). “Exclusive mutation in epidermal growth factor receptor gene, HER-2, and KRAS, and synchronous methylation of nonsmall cell lung cancer.” Cancer 106(10): 2200–7.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, H., G. Deng, et al. (2006). “BRAF mutation, CpG island methylator phenotype and microsatellite instability occur more frequently and concordantly in mucinous than non-mucinous colorectal cancer.” Int J Cancer 118(11): 2765–71.

    Article  PubMed  CAS  Google Scholar 

  • Tanay, A., A. H. O'Donnell, et al. (2007). “Hyperconserved CpG domains underlie Polycomb-binding sites.” Proc Natl Acad Sci USA 104(13): 5521–6.

    Article  PubMed  CAS  Google Scholar 

  • Thibodeau, S. N., G. Bren, et al. (1993). “Microsatellite instability in cancer of the proximal colon.” Science 260(5109): 816–9.

    Article  PubMed  CAS  Google Scholar 

  • Torlakovic, E. and D. C. Snover (1996). “Serrated adenomatous polyposis in humans.” Gastroenterology 110(3): 748–55.

    Article  PubMed  CAS  Google Scholar 

  • Toyota, M. and J. P. Issa (1999). “CpG island methylator phenotypes in aging and cancer.” Semin Cancer Biol 9(5): 349–57.

    Article  PubMed  CAS  Google Scholar 

  • Toyota, M. and J. P. Issa (2002). “Methylated CpG island amplification for methylation analysis and cloning differentially methylated sequences.” Methods Mol Biol 200: 101–10.

    PubMed  CAS  Google Scholar 

  • Toyota, M., M. Ohe-Toyota, et al. (2000). “Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype.” Proc Natl Acad Sci USA 97(2): 710–5.

    Article  PubMed  CAS  Google Scholar 

  • Valle, L., P. Carbonell, et al. (2007). “MLH1 germline epimutations in selected patients with early-onset non-polyposis colorectal cancer.” Clin Genet 71(3): 232–7.

    Article  PubMed  CAS  Google Scholar 

  • van Rijnsoever, M., F. Grieu, et al. (2002). “Characterisation of colorectal cancers showing hyper-methylation at multiple CpG islands.” Gut 51(6): 797–802.

    Article  PubMed  Google Scholar 

  • Vandrovcova, J., K. Lagerstedt-Robinsson, et al. (2006). “Somatic BRAF-V600E mutations in familial colorectal cancer.” Cancer Epidemiol Biomarkers Prev 15(11): 2270–3.

    Article  PubMed  CAS  Google Scholar 

  • Varambally, S., S. M. Dhanasekaran, et al. (2002). “The polycomb group protein EZH2 is involved in progression of prostate cancer.” Nature 419(6907): 624–9.

    Article  PubMed  CAS  Google Scholar 

  • Vilkaitis, G., I. Suetake, et al. (2005). “Processive methylation of hemimethylated CpG sites by mouse Dnmt1 DNA methyltransferase.” J Biol Chem 280(1): 64–72.

    PubMed  CAS  Google Scholar 

  • Vogelstein, B., E. R. Fearon, et al. (1988). “Genetic alterations during colorectal-tumor development.” N Engl J Med 319(9): 525–32.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, C. P., J. R. Chaillet, et al. (1998). “Transcription of IAP endogenous retroviruses is constrained by cytosine methylation.” Nat Genet 20(2): 116–7.

    Article  PubMed  CAS  Google Scholar 

  • Weisenberger, D. J., K. D. Siegmund, et al. (2006). “CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer.” Nat Genet 38(7): 787–93.

    Article  PubMed  CAS  Google Scholar 

  • Widschwendter, M., H. Fiegl, et al. (2007). “Epigenetic stem cell signature in cancer.” Nat Genet 39(2): 157–8.

    Article  PubMed  CAS  Google Scholar 

  • Wong, D. J., S. A. Foster, et al. (1999). “Progressive region-specific de novo methylation of the p16 CpG island in primary human mammary epithelial cell strains during escape from M(0) growth arrest.” Mol Cell Biol 19(8): 5642–51.

    PubMed  CAS  Google Scholar 

  • Wong, J. J., N. J. Hawkins, et al. (2007a). “Colorectal cancer: a model for epigenetic tumorigen-esis.” Gut 56(1): 140–8.

    Article  CAS  Google Scholar 

  • Wong, C. K., Z. Chen, et al. (2007b). “Polycomb group protein RING1B is a direct substrate of Caspases-3 and -9.” Biochim Biophys Acta 1773(6): 844–52.

    Article  CAS  Google Scholar 

  • Wu, D. L., F. Y. Sui, et al. (2006). “Methylation in esophageal carcinogenesis.” World J Gastroenterol 12(43): 6933–40.

    PubMed  CAS  Google Scholar 

  • Wynter, C. V., M. D. Walsh, et al. (2004). “Methylation patterns define two types of hyperplastic polyp associated with colorectal cancer.” Gut 53(4): 573–80.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, K., T. Dai, et al. (2003). “Genetics supersedes epigenetics in colon cancer phenotype.” Cancer Cell 4(2): 121–31.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S., F. A. Farraye, et al. (2004). “BRAF and KRAS Mutations in hyperplastic polyps and serrated adenomas of the colorectum: relationship to histology and CpG island methylation status.” Am J Surg Pathol 28(11): 1452–9.

    Article  PubMed  Google Scholar 

  • Yasui, W., K. Sentani, et al. (2006). “Molecular pathobiology of gastric cancer.” Scand J Surg 95(4): 225–31.

    PubMed  CAS  Google Scholar 

  • Yoder, J. A., C. P. Walsh, et al. (1997). “Cytosine methylation and the ecology of intragenomic parasites.” Trends Genet 13(8): 335–40.

    Article  PubMed  CAS  Google Scholar 

  • Young, J., K. G. Biden, et al. (2001a). “HPP1: a transmembrane protein-encoding gene commonly methylated in colorectal polyps and cancers.” Proc Natl Acad Sci USA 98(1): 265–70.

    Article  CAS  Google Scholar 

  • Young, J., L. A. Simms, et al. (2001b). “Features of colorectal cancers with high-level microsatel-lite instability occurring in familial and sporadic settings: parallel pathways of tumorigenesis.” Am J Pathol 159(6): 2107–16.

    Article  CAS  Google Scholar 

  • Young, J., M. A. Barker, et al. (2005). “Evidence for BRAF mutation and variable levels of mic-rosatellite instability in a syndrome of familial colorectal cancer.” Clin Gastroenterol Hepatol 3(3): 254–63.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., R. Cao, et al. (2004). “Mechanism of Polycomb group gene silencing.” Cold Spring Harb Symp Quant Biol 69: 309–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne P. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Young, J.P., Laird, P.W. (2009). DNA Methylation in Colorectal Cancer: Multiple Facets of Tumorigenesis. In: Potter, J.D., Lindor, N.M. (eds) Genetics of Colorectal Cancer. Cancer Genetics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09568-4_4

Download citation

Publish with us

Policies and ethics