Skip to main content

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 3))

  • 873 Accesses

Abstract

Thioredoxins are a class of small redox-regulating proteins that play a crucial role against various oxidative stress-inducible degenerative diseases. A recent study demonstrated that in the ischemic reperfused myocardium, thioredoxin-1 (Trx-1) level is reduced. Upon adaptation to ischemic stress by preconditioning with repeated cyclic episodes of small duration of ischemia and reperfusion, there was an increased expression of Trx-1. Inhibition of Trx-1 expression resulted in reduced postischemic ventricular recovery and increased myocardial infarct size in the preconditioned heart. Corroborating these findings, transgenic mouse hearts overexpressing Trx-1 were resistant to ischemic reperfusion injury as compared to the hearts from wild-type mice. Thus, it appears that thioredoxin plays a crucial role in cardioprotection induced by preconditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ago, T., Yeh, I., Yamamoto, M., Schinke-Braun, M., Brown, J.A., Tian, B., and Sadoshima, J. 2006. Thioredoxin1 upregulates mitochondrial proteins related to oxidative phosphorylation and TCA cycle in the heart. Antioxid. Redox Signal. 8:1635-1650.

    CAS  PubMed  Google Scholar 

  • Aota, M., Matsuda, K., Isowa, N., Wada, H., Yodoi, J., and Ban, T. 1996. Protection against reperfusion-induced arrhythmias by human thioredoxin. J. Cardiovasc. Pharmacol. 27:727-732.

    PubMed  Google Scholar 

  • Arnold, N.B., Ketterer, K., Kleeff, J., Friess, H., Buchler, M.W., and Korc, M. 2004. Thioredoxin is downstream of Smad7 in a pathway that promotes growth and suppresses cisplatin-induced apoptosis in pancreatic cancer. Cancer Res. 64:3599-3606.

    CAS  PubMed  Google Scholar 

  • auf dem Keller, U., Kumin, A., Braun, S., and Werner, S. 2006. Reactive oxygen species and their detoxification in healing skin wounds. J. Invest. Dermatol. Symp. Proc. 11:106-111.

    CAS  Google Scholar 

  • Babusikova, E., Kaplan, P., Lehotsky, J., Jesenak, M., and Dobrota, D. 2004. Oxidative modifica-tion of rat cardiac mitochondrial membranes and myofibrils by hydroxyl radicals. Gen. Physiol. Biophys. 23:327-335.

    CAS  PubMed  Google Scholar 

  • Beer, S.M., Taylor, E.R., Brown, S.E., Dahm, C.C., Costa, N.J., Runswick, M.J., and Murphy, M.P. 2004. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant de-fence. J. Biol. Chem. 279:47939-47951.

    CAS  PubMed  Google Scholar 

  • Berndt, C., Lillig, C.H., and Holmgren, A. 2007. Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 292:H1227-H1236.

    CAS  PubMed  Google Scholar 

  • Bochner, B.R., Lee, P.C., Wilson, S.W., Cutler, C.W., and Ames, B.N. 1984. AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidative stress. Cell 37:225-232.

    CAS  PubMed  Google Scholar 

  • Botting, R., and Vane, J.R. 1989. The receipt and dispatch of chemical messengers by endothelial cells. Prog. Clin. Biol. Res. 301:1-11.

    CAS  PubMed  Google Scholar 

  • Brown, J.H., Del Re, D.P., and Sussman, M.A. 2006. The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circ. Res. 98:730-732.

    CAS  PubMed  Google Scholar 

  • Bujak, M., and Frangogiannis, N.G., 2007. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc. Res. 74:184-195.

    CAS  PubMed  Google Scholar 

  • Chae, H.Z., Chung, S.J., and Rhee, S.G. 1994. Thioredoxin-dependent peroxide reductase from yeast. J. Biol. Chem. 269:27670-27678.

    CAS  PubMed  Google Scholar 

  • Chen, Q., Camara, A.K., Stowe, D.F., Hoppel, C.L., and Lesnefsky, E.J. 2007. Modulation of elec-tron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am. J. Physiol. Cell Physiol. 292:C137-C147.

    CAS  PubMed  Google Scholar 

  • Chen, Y., Cai, J., and Jones, D.P. 2006. Mitochondrial thioredoxin in regulation of oxidant-induced cell death. FEBS Lett. 580:6596-6602.

    CAS  PubMed  Google Scholar 

  • Chiarugi, P., and Fiaschi, T. 2006. Redox signalling in anchorage-dependent cell growth. Cell Signal. 19:672-682.

    PubMed  Google Scholar 

  • Chiueh, C.C., Andoh, T., and Chock, P.B. 2005. Induction of thioredoxin and mitochondrial sur-vival proteins mediates preconditioning-induced cardioprotection and neuroprotection. Ann. N.Y. Acad. Sci. 1042:403-418.

    CAS  PubMed  Google Scholar 

  • Cordis, G.A., Bagchi, D., Maulik, N., and Das, D.K. 1994. High-performance liquid chromato-graphic method for the simultaneous detection of malonaldehyde, acetaldehyde, formaldehyde, acetone and propionaldehyde to monitor the oxidative stress in heart. J. Chromatogr. 661:181-191.

    CAS  Google Scholar 

  • Cordis, G.A., Das, D.K., and Riedel, W. 1998a. High-performance liquid chromato-graphic peak identification of 2,4-dinitrophenylhydrazine derivatives of lipid peroxidation aldehydes by pho-todiode array detection. J. Chromatogr. 798:117-123.

    CAS  Google Scholar 

  • Cordis, G.A., Maulik, G., Bagchi, D., Riedel, W., and Das, D.K. 1998b. Detection of oxidative DNA damage to ischemic reperfused rat hearts by 8-hydroxydeoxyguanosine formation. J. Mol. Cell. Cardiol. 30:1939-1944.

    CAS  PubMed  Google Scholar 

  • Daily, D., Vlamis-Gardikas, A., Offen, D., Mittelman, L., Melamed, E., Holmgren, A., and Barzilai, A. 2001a. Glutaredoxin protects cerebellar granule neurons from dopamine-induced apoptosis by dual activation of the ras-phosphoinositide 3-kinase and jun N-terminal kinase pathways. J. Biol. Chem. 276:21618-21626.

    CAS  PubMed  Google Scholar 

  • Daily, D., Vlamis-Gardikas, A., Offen, D., Mittelman, L., Melamed, E., Holmgren, A., and Barzilai, A. 2001. Glutaredoxin protects cerebellar granule neurons from dopamine-induced apoptosis by activating NF-kappa B via Ref-1. J. Biol. Chem. 276:1335-1344.

    CAS  PubMed  Google Scholar 

  • Das, D.K. 2004. Thioredoxin regulation of ischemic preconditioning. Antioxid. Redox Signal. 6:405-412.

    CAS  PubMed  Google Scholar 

  • Das, D.K., and Maulik, N. 2003. Preconditioning potentiates redox signaling and converts death signal into survival signal. Arch. Biochem. Biophys. 420:305-311.

    CAS  PubMed  Google Scholar 

  • Das, D.K., and Maulik, N. 2005. Mitochondrial function in cardiomyocytes: target for cardiopro-tection. Curr. Opin. Anaesthesiol. 18:77-82.

    PubMed  Google Scholar 

  • Das, D.K., and Maulik, N. 2006. Cardiac genomic response following preconditioning stimulus. Cardiovasc. Res. 70:254-263.

    CAS  PubMed  Google Scholar 

  • Das, D.K., Maulik, N., and Moraru, I.I. 1995. Gene expression in acute myocardial stress. Induc-tion by hypoxia, ischemia, hyperthermia and oxidative stress. J. Mol. Cell. Cardiol. 27:181-193

    CAS  PubMed  Google Scholar 

  • Das, D.K., Maulik, N., Sato, M., and Ray, P.S. 1999. Reactive oxygen species function as second messenger during ischemic preconditioning of heart. Mol. Cell. Biochem. 196:59-67.

    CAS  PubMed  Google Scholar 

  • Das, K.C., Lewis-Molock, Y., and White, C.W. 1997. Elevation of manganese superoxide dismu-tase gene expression by thioredoxin. Am. J. Respir. Cell. Mol. Biol. 17:713-726.

    CAS  PubMed  Google Scholar 

  • Das, S., Otani, H., Maulik, N., and Das, D.K. 2006. Redox regulation of angiotensin II precon-ditioning of the myocardium requires MAP kinase signaling. J. Mol. Cell. Cardiol. 41:248-255.

    CAS  PubMed  Google Scholar 

  • de Haan, J.B., Witting, P.K., Stefanovic, N., Pete, J., Daskalakis, M., Kola, I., Stocker, R., and Smolich, J.J. 2006. Lack of the antioxidant glutathione peroxidase-1 does not increase atherosclerosis in C57BL/J6 mice fed a high-fat diet. J. Lipid Res. 47:1157-1167.

    CAS  PubMed  Google Scholar 

  • Di Lisa, F., and Bernardi, P. 2006. Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc. Res. 70:191-199.

    CAS  PubMed  Google Scholar 

  • Fernandes, A.P., and Holmgren, A. 2004. Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid. Redox Signal. 6:63-74.

    CAS  PubMed  Google Scholar 

  • Frangogiannis, N.G. 2006. The mechanistic basis of infarct healing. Antioxid, Redox Signal. 8:1907-1939.

    CAS  Google Scholar 

  • Furman, C., Rundlof, A.K., Larigauderie, G., Jaye, M., Bricca, G., Copin, C., Kandoussi, A.M., Fruchart, J.C., Arner, E.S., and Rouis, M. 2004. Thioredoxin reductase 1 is upregulated in atherosclerotic plaques: specific induction of the promoter in human macrophages by oxidized low-density lipoproteins. Free Radical Biol. Med. 37:71-85.

    CAS  Google Scholar 

  • Gutierrez, A.M., Reboredo, G.R., Mosca, S.M., and Catala, A. 2006. A low degree of fatty acid unsaturation leads to high resistance to lipid peroxidation in mitochondria and microsomes of different organs of quail (Coturnix coturnix japonica). Mol. Cell. Biochem. 282:109-115.

    CAS  PubMed  Google Scholar 

  • Haendeler, J., Tischler, V., Hoffmann, J., Zeiher, A.M., and Dimmeler, S. 2004. Low doses of reactive oxygen species protect endothelial cells from apoptosis by increasing thioredoxin-1 expression. FEBS Lett. 577:427-433.

    CAS  PubMed  Google Scholar 

  • Hagg, D., Englund, M.C., Jernas, M., Schmidt, C., Wiklund, O., Hulten, L.M., Ohlsson, B.G., Carlsson, L.M., Carlsson, B., and Svensson, P.A. 2006. Oxidized LDL induces a coordinated up-regulation of the glutathione and thioredoxin systems in human macrophages. Atherosclerosis 185:282-289.

    PubMed  Google Scholar 

  • Hangaishi, M., Ishizaka, N., Aizawa, T., Kurihara, Y., Taguchi, J., Nagai, R., Kimura, S., and Ohno, M. 2000. Induction of heme oxygenase-1 can act protectively against cardiac is-chemia/reperfusion in vivo. Biochem. Biophys. Res. Commun. 279:582-588.

    CAS  PubMed  Google Scholar 

  • Ho, C.Y., and Seidman, C.E. 2006. A contemporary approach to hypertrophic cardio-myopathy. Circulation 113:858-862.

    Google Scholar 

  • Holmgren, A. 1985. Thioredoxin. Annu. Rev. Biochem. 54:237-271.

    CAS  Google Scholar 

  • Holmgren, A. 1989. Thioredoxin and glutaredoxin systems. J. Biol. Chem. 264:13963-13966.

    CAS  PubMed  Google Scholar 

  • Holmgren, A., and Bjornstedt, M. 1995. Thioredoxin and thioredoxin reductase. Methods Enzy-mol. 252:199-208.

    CAS  Google Scholar 

  • Holmgren, A., and Luthman, M. 1978. Tissue distribution and subcellular localization of bovine thioredoxin determined by radioimmunoassay. Biochemistry 17:4071-4077.

    CAS  PubMed  Google Scholar 

  • Honda, H.M., Korge, P., and Weiss, J.N. 2005. Mitochondria and ischemia/reperfusion injury. Ann. N.Y. Acad. Sci. 1047:248-258.

    CAS  PubMed  Google Scholar 

  • Huang, C.H., Vatner, S.F., Peppas, A.P., Yang, G., and Kudej, R.K. 2003. Cardiac nerves affect myocardial stunning through reactive oxygen and nitric oxide mechanisms. Circ. Res. 93:866-873.

    CAS  PubMed  Google Scholar 

  • Isowa, N., Yoshimura, T., Kosaka, S., Liu, M., Hitomi, S., Yodoi, J., and Wada, H. 2000. Human thioredoxin attenuates hypoxia-reoxygenation injury of murine endothelial cells in a thiol-free condition. J. Cell. Physiol. 182:33-40.

    CAS  PubMed  Google Scholar 

  • Jekell, A., Hossain, A., Alehagen, U., Dahlstrom, U., and Rosen, A. 2004. Elevated circulating levels of thioredoxin and stress in chronic heart failure. Eur. J. Heart Fail. 6:883-890.

    CAS  PubMed  Google Scholar 

  • Kaarteenaho-Wiik, R., Saily, M., Sormunen, R., Paakko, P., Holmgren, A., Soini, Y., and Kinnula, V.L. 2004. Expression of glutaredoxin is highly cell specific in human lung and is decreased by transforming growth factor-beta in vitro and in interstitial lung diseases in vivo. Hum. Pathol. 35:1000-1007.

    PubMed  Google Scholar 

  • Kakisaka, Y., Nakashima, T., Sumida, Y., Yoh, T., Nakamura, H., Yodoi, J., and Senmaru, H. 2002. Elevation of serum thioredoxin levels in patients with type 2 diabetes. Horm. Metab. Res. 34:160-164.

    Article  CAS  PubMed  Google Scholar 

  • Kevin, L.G., Novalija, E., and Stowe, D.F. 2005. Reactive oxygen species as mediators of cardiac injury and protection: the relevance to anesthesia practice. Anesth. Analgesia 101:1275-1287.

    Google Scholar 

  • Kihlstrom, M. 1990. Protection effect of endurance training against reoxygenation-induced injuries in rat heart. J. Appl. Physiol. 68:1672-1688.

    CAS  PubMed  Google Scholar 

  • Kim, Y., Lee, S.H., and Ho, W.K. 2007. Hydrogen peroxide selectively increases TREK-2 currents via myosin light chain kinases. Front. Biosci. 12:1642-1650.

    CAS  PubMed  Google Scholar 

  • Kondo, N., Nakamura, H., Masutani, H., and Yodoi, J. 2006. Redox regulation of human thiore-doxin network. Antioxid. Redox Signal. 8:1881-1890.

    CAS  PubMed  Google Scholar 

  • Koneru, S., Penumathsa, S., Thirunavukkarasum, M., Samuel, S.M., Zhan, L., Han, Z., Maulik, G., Das, D.K., and Maulik, N. 2007. Redox regulation of ischemic preconditioning is mediated by the differential activation of caveolins and their association with Enos and Glut-4. Am. J. Physiol. Heart Circ. Physiol. 292:H2060-H2072.

    CAS  PubMed  Google Scholar 

  • Kozlovski, V.I., Olszanecki, R., and Chlopicki, S. 2006. Free radicals generated by xan- thine/xanthine oxidase system augment nitric oxide synthase (NOS) and cyclooxygenase (COX)-independent component of bradykinin-induced vasodilatation in the isolated guinea pig heart. Pharmacol. Rep. 58:405-412.

    CAS  PubMed  Google Scholar 

  • Kujoth, G.C., Hiona, A., Pugh, T.D., Someya, S., Panzer, K., Wohlgemuth, S.E., Hofer, T., Seo, A.Y., Sullivan, R., Jobling, W.A., Morrow, J.D., Van Remmen, H., Sedivy, J.M., Yamasoba, T., Tanokura, M., Weindruch, R., Leeuwenburgh, C., and Prolla, T.A. 2005. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481-484.

    CAS  PubMed  Google Scholar 

  • Kuster, G.M., Siwik, D.A., Pimentel, D.R., and Colucci, W.S. 2006. Role of reversible, thioredoxin-sensitive oxidative protein modifications in cardiac myocytes. Antioxid. Redox Signal. 8:2153-2159.

    CAS  PubMed  Google Scholar 

  • Laderoute, K.R., and Webster, K.A. 1997. Hypoxia/reoxygenation stimulates Jun kinase activity through redox signaling in cardiac myocytes. Circ. Res. 80:336-344.

    CAS  PubMed  Google Scholar 

  • Lantos, J., Temes, G., Gobolos, L., Jaberansari, M.T., and Roth, E. 2001. Is peripheral blood a reliable indicator of acute oxidative stress following heart ischemia and reperfusion? Med. Sci. Monitor. 7:1166-1170.

    CAS  Google Scholar 

  • Lecour, S., Baouali, A.B., Maupoil, V., Chahine, R., Abadie, C., Javouhey-Donzel, A., Rochette, L., and Nadeau, R. 1998. Demonstration of the production of oxygen-centered free radicals during electrolysis using E.S.R. spin-trapping techniques: effects on cardiac function in the isolated rat heart. Free Radical Biol. Med. 24:573-579.

    CAS  Google Scholar 

  • Li, X., Xu, Z., Li, S., and Rozanski, G.J., 2005. Redox regulation of Ito remodeling in diabetic rat heart. Am. J. Physiol. Heart Circ. Physiol. 288:H1417-H1424.

    CAS  PubMed  Google Scholar 

  • Liang, M., and Pietrusz, J.L., 2007. Thiol-related genes in diabetic complications: a novel protec-tive role for endogenous thioredoxin 2. Arterioscler. Thromb. Vasc. Biol. 27:77-83.

    CAS  PubMed  Google Scholar 

  • Lillig, C.H., and Holmgren, A. 2007. Thioredoxin and related molecules—from biology to health and disease. Antioxid. Redox Signal. 9:25-47.

    CAS  PubMed  Google Scholar 

  • Lillig, C.H., Berndt, C., Vergnolle, O., Lonn, M.E., Hudemann, C., Bill, E., and Holmgren, A. 2005. Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor. Proc. Natl. Acad. Sci. USA 10:8168-8173.

    Google Scholar 

  • Lovell, M.A., Chengsong, X., Gabbita, S.P., and Markesbery, W.R. 2000. Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer’s disease brain. Free Radical Biol. Med. 28:418-427.

    CAS  Google Scholar 

  • Lundberg, M., Johansson, C., Chandra, J., Enoksson, M., Jacobsson, G., Ljung, J., Johansson, M., and Holmgren, A. 2001. Cloning and expression of a novel human glutaredoxin (Grx2) with mitochondrial and nuclear isoforms. J. Biol. Chem. 276:26269-26275.

    CAS  PubMed  Google Scholar 

  • Malik, G., Gorbounov, N., Das, S., Gurusamy, N., Otani, H., Maulik, N., Goswami, S., and Das, D.K. 2006. Ischemic preconditioning triggers nuclear translocation of thioredoxin and its interaction with Ref-1 potentiating a survival signal through the PI-3-kinase-Akt pathway. Antioxid. Redox Signal. 8:2101-2109.

    CAS  PubMed  Google Scholar 

  • Matsushima, S., Ide, T., Yamato, M., Matsusaka, H., Hattori, F., Ikeuchi, M., Kubota, T., Sunagawa, K., Hasegawa, Y., Kurihara, T., Oikawa, S., Kinugawa, S., and Tsutsui, H. 2006. Overexpression of mitochondrial peroxiredoxin-3 prevents left ventricular remodeling and fail- ure after myocardial infarction in mice. Circulation 113:1779-1786.

    CAS  PubMed  Google Scholar 

  • Maulik, N., Yoshida, T., Zu, Y.L., Sato, M., Banerjee, A., and Das, D.K. 1998. Ischemic precon-ditioning triggers tyrosine kinase signaling: A potential role for MAPKAP kinase 2. Am. J. Physiol. 275:H1857-H1864.

    CAS  PubMed  Google Scholar 

  • Meyskens, F.L., Jr., Farmer, P.J., and Anton-Culver, H. 2004. Etiologic pathogenesis of melanoma. A unifying hypothesis for the missing attributable risk. Clin. Cancer Res. 10:2581-2583.

    CAS  PubMed  Google Scholar 

  • Mitsui, A., Hirakawa, T., and Yodoi, J. 1992. Reactive oxygen-reducing and protein-refolding activities of adult T cell leukomia-derived factor/human thioredoxin. Biochem. Biophys. Res. Commun. 186:1220-1226.

    CAS  PubMed  Google Scholar 

  • Miwa, K., Kishimoto, C., Nakamura, H., Makita, T., Ishii, K., Okuda, N., Yodoi, J., and Sasayama, S. 2005. Serum thioredoxin and alpha-tocopherol concentrations in patients with major risk factors. Circ. J. 69:291-294.

    CAS  PubMed  Google Scholar 

  • Miyamoto, M., Kishimoto, C., Shioji, K., Lee, J.D., Shimizu, H., Ueda, T., and Yodoi, J. 2003. Cutaneous arteriolar thioredoxin expression in patients with heart failure. Circ. J. 67:116-118.

    CAS  PubMed  Google Scholar 

  • Miyamoto, S., Kawano, H., Hokamaki, J., Soejima, H., Kojima, S., Kudoh, T., Nagayoshi, Y., Sugiyama, S., Sakamoto, T., Yoshimura, M., Nakamura, H., Yodoi, J., and Ogawa, H. 2005. In-creased plasma levels of thioredoxin in patients with glucose intolerance. Intern. Med. 44:1127-1132.

    CAS  PubMed  Google Scholar 

  • Nakamura, H., Derosa, S., Roedere, M., Anderson, M.T., and Dubs, J.G. 1996. Elevation of plasma thioredoxin levels in HIV infected individuals. Int. Immunol. 8:603-611.

    CAS  PubMed  Google Scholar 

  • Nakamura, H., Nakamura, K., and Yodoi, J. 1997. Redox regulation of cellular activation. Annu. Rev. Immunol. 15:351-369.

    CAS  PubMed  Google Scholar 

  • Nakamura, H., Vaage, J., Valen, G., Padilla, C.A., Bjornstedt, M., and Holmgren, A. 1998. Mea-surements of plasma glutaredoxin and thioredoxin in healthy volunteers and during open-heart surgery. Free. Radical Biol. Med. 24:1176-1186.

    CAS  Google Scholar 

  • Nimata, M., Kishimito, C., Shioji, K., Ishizaki, K., Kitaguchi, S., Hashimoto, T., Nagata, N., and Kawai, C. 2003. Upregulation of redox-regulating protein, thioredoxin, in endomyocar-dial biopsy samples of patients with myocarditis and cardiomyopathies. Mol. Cell. Biochem. 248:193-196.

    CAS  PubMed  Google Scholar 

  • Nishida, K., Miyazawa, Y., Hatano, M., Suzuki, K., Hirose, A., Fukushima, R., Okinaga, K. J. 1998 Reperfusion induces sublethal endothelial injury. Surg Res 79:85-90.

    CAS  Google Scholar 

  • Nishida, M., Maruyama, Y., Tanaka, R., Kontani, K., Nagao, T., and Kurose, H.G. 2000. Alpha(i) and G alpha(o) are target proteins of reactive oxygen species. Nature 408:492-495.

    CAS  PubMed  Google Scholar 

  • Ohira, A., Honda, O., Gauntt, C.D., Yamamoto, M., Hori, K., Masutani, H., Yodoi, J., and Honda, Y. 1994. Oxidative stress induces adult T cell leukemia derived factor/thioredoxin in the rat retina. Lab. Invest. 70:279-285.

    CAS  PubMed  Google Scholar 

  • Petrosillo, G., Di Venosa, N., Ruggiero, F.M., Pistolese, M., D’Agostino, D., Tiravanti, E., Fiore, T., and Paradies, G. 2005. Mitochondrial dysfunction associated with cardiac ischemia/reperfusion can be attenuated by oxygen tension control. Role of oxygen-free radicals and cardiolipin. Biochim. Biophys. Acta 1710:78-86.

    CAS  PubMed  Google Scholar 

  • Piccoli, C., D’Aprile, A., Ripoli, M., Scrima, R., Lecce, L., Boffoli, D., Tabilio, A., and Capitanio, N. 2007. Bone-marrow derived hematopoietic stem/progenitor cells express multiple isoforms of NADPH oxidase and produce constitutively reactive oxygen species. Biochem. Biophys. Res. Commun. 353:965-972.

    CAS  PubMed  Google Scholar 

  • Pimentel, D.R., Adachi, T., Idom, Y., Heibeck, T., Jiang, B., Lee, Y., Melendez, J.A., Cohen, R.A., and Colucci, W.S. 2006. Strain-stimulated hypertrophy in cardiac myocytes is mediated by re-active oxygen species-dependent Ras S-glutathiolation. J. Mol. Cell. Cardiol. 41:613-622.

    CAS  PubMed  Google Scholar 

  • Powis, G., and Monfort, W.R. 2001. Properties and biological activities of thioredoxins. Annu. Rev. Pharmacol. Toxicol. 41:261-295.

    CAS  PubMed  Google Scholar 

  • Proctor, P.H., Kirpatrick, D.S., Morehead, L.A., Ginness, J.E., Hilton, J.G., and Hokanson, J.A. 1979. Role of active oxygen species in ocular and neurological diseases. Abstract, Conference on Active Oxygen and Medicine, Honolulu, Hawaii, March 3-4.

    Google Scholar 

  • Sachi, Y., Hirota, K., Masutani, H., Toda, K., and Takahashi, O. 1995. Induction of ADF/TRX by oxidative stress in keratinocytes and lymphoid cells. Immunol. Lett. 44:189-193.

    CAS  PubMed  Google Scholar 

  • Sano, H., Sata, T., Nanri, H., Ikeda, M., and Shigematsu, A. 2002. Thioredoxin is associated with endotoxin tolerance in mice. Crit. Care Med. 30:190-194.

    CAS  PubMed  Google Scholar 

  • Sato, M., Cordis, G.A., Maulik, N., and Das, D.K. 2000. SAPKs regulation of ischemic precondi-tioning. Am. J. Physiol. 279:H901-H907.

    CAS  Google Scholar 

  • Shinmura, K., Xuan, Y.T., Tang, X.L., Kodani, E., Han, H., Zhu, Y., and Bolli, R. 2002. Inducible nitric oxide synthase modulates cyclooxygenase-2 activity in the heart of conscious rabbits dur-ing the late phase of ischemic preconditioning. Circ. Res. 90:602-608.

    CAS  PubMed  Google Scholar 

  • Shioji, K., Kishimoto, C., Nakamura, H., Masutani, H., Yuan, Z., Oka, S., and Yodoi, J. 2002. Overexpression of thioredoxin-1 in transgenic mice attenuates adriamycin-induced cardiotoxi-city. Circulation 106:1403-1409.

    CAS  PubMed  Google Scholar 

  • Shioji, K., Nakamura, H., Masutani, H., and Yodoi, J. 2003. Redox regulation by thioredoxin in cardiovascular diseases. Antioxid. Redox Signal. 5:795-802.

    CAS  PubMed  Google Scholar 

  • Skibska, B., Jozefowicz-Okonkwo, G., and Goraca, A. 2006. Protective effects of early adminis-tration of alpha-lipoic acid against lipopolysaccharide-induced plasma lipid peroxidation. Phar-macol. Rep. 58:399-404.

    CAS  Google Scholar 

  • Takagi, S., Bhat, G.B., Hummel, B.C., and Walfish, P.G. 1989. Thioredoxin and glutaredoxin en-hance the binding of L-triiodothyronine to its hepatic nuclear receptors. Biochem. Cell Biol. 67:477-480.

    CAS  PubMed  Google Scholar 

  • Takagi, Y., Mitusi, A., Nishiyama, A., Nozaki, K., and Sono, H. 1999. Overexpression of thiore-doxin in transgenic mice attenuates focal ischemic brain damage. Proc. Natl. Acad. Sci. USA 96:4131-4136.

    CAS  PubMed  Google Scholar 

  • Takimoto, E., and Kass, D.A. 2007. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49:241-248.

    CAS  PubMed  Google Scholar 

  • Tanaka, T., Nishiyama, Y., Okada, K., Hirota, K., Matsui, M., Yodoi, J., Hiai, H., and Toyokuni, S. 1997. Induction and nuclear translocation of thioredoxin by oxidative damage in the mouse kidney: independence of tubular necrosis and sulfhydryl depletion. Lab. Invest. 77:145-155.

    CAS  PubMed  Google Scholar 

  • Tanguy, S., Boucher, F.R., Malfroy, B., and de Leiris, J.G. 1996. Free radicals in reperfusion-induced arrhythmias: study with EUK 8, a novel nonprotein catalytic antioxidant. Free. Radical Biol. Med. 21:945-954.

    CAS  Google Scholar 

  • Tanito, M., Nakamura, H., Kwon, Y.W., Teratani, A., Masutani, H., Shioji, K., Kishimoto, C., Ohira, A., Horie, R., and Yodoi, J. 2004. Enhanced oxidative stress and impaired thioredoxin expression in spontaneously hypertensive rats. Antioxid. Redox Signal. 6:89-97.

    CAS  PubMed  Google Scholar 

  • Tao, L., Jiao, X., Gao, E., Lau, W.B., Yuan, Y., Lopez, B., Christopher, T., Ramachandra, Rao, S.P., Williams, W., Southan, G., Sharma, K., Koch, W., and Ma, X.L. 2006a. Nitrative inactiva-tion of thioredoxin-1 and its role in postischemic myocardial apoptosis. Circulation 114:1395-1402.

    Google Scholar 

  • Tao, L., Gao, E., Hu, A., Coletti, C., Wang, Y., Christopher, T.A., Lopez, B.L., Koch, W., and Ma, X.L. 2006b. Thioredoxin reduces post-ischemic myocardial apoptosis by reducing oxida-tive/nitrative stress. Br. J. Pharmacol, 149:311-318.

    CAS  PubMed  Google Scholar 

  • Tortolani, A.J., Powell, S.R., Misik, V., Weglicki, W.B., Pogo, G.J., and Kramer, J.H. 1993. Detec-tion of alkoxyl and carbon-centered free radicals in coronary sinus blood from patients under-going elective cardioplegia. Free Radical Biol. Med. 14:421-426.

    CAS  Google Scholar 

  • Tosaki, A., Bagchi, D., Pali, T., Cordis, G.A., and Das, D.K. 1993. Comparison of ESR and HPLC methods for the detection of OH radicals in ischemic reperfused hearts. Biochem. Pharmacol. 45:961-969.

    CAS  PubMed  Google Scholar 

  • Tsutsui, H., Ide, T., and Kinugawa, S. 2006. Mitochondrial oxidative stress, DNA damage, and heart failure. Antioxid. Redox Signal. 8:1737-1744.

    CAS  PubMed  Google Scholar 

  • Thang, V.W.S., Engelman, R.M., Maulik, N., Ho, Y.S., and Das, D.K. 2003a. Thioredoxin redox signaling in the ischemic heart: an insight with transgenic mice overexpressing Trx1. J. Mol. Cell. Cardiol. 35:695-704.

    Google Scholar 

  • Turoczi, T., Jun, L., Cordis, G., Morris, J.E., Maulik, N., Stevens, R.G., and Das, D.K. 2003b. HFE mutation and dietary iron content interact to increase ischemia/reperfusion injury of the heart in mice. Circ. Res. 92:1240-1246.

    CAS  PubMed  Google Scholar 

  • Valen, G., Semb, A.G., and Vaage, J. 1993. Inhibition of lipoxygenase and cyclooxygenase aug-ments cardiac injury by H2O2. Free Radical Biol. Med. 15:27-35.

    CAS  Google Scholar 

  • Valen, G., Starkopf, J., Takeshima, S., Kullisaar, T., Vihalemm, T., Kengsepp, A.T., Lowbeer, C., Vaage, J., and Zilmer, M., 1998. Preconditioning with hydrogen peroxide (H2O2) or ischemia in H2O2-induced cardiac dysfunction. Free Radical Res. 29:235-245.

    CAS  Google Scholar 

  • Washburn, M.P., and Wells, W.W. 1999. Identification of the dehydroascorbic acid reductase and thioltransferase (glutaredoxin) activities of bovine erythrocyte glutathione peroxidase. Biochem. Biophys. Res. Commun. 257:567-571.

    CAS  PubMed  Google Scholar 

  • Yamagata, K., Tagami, M., Ikeda, K., Yamori, Y., and Nara, Y. 2000. Altered gene expressions during hypoxia and reoxygenation in cortical neurons isolated from stroke-prone spontaneously hypertensive rats. Neurosci. Lett. 284:131-134.

    CAS  PubMed  Google Scholar 

  • Yamamoto, M., Yang, G., Hong, C., Liu, J., Holle, E., Yu, X., Wagner, T., Vatner, S.F., and Sadoshima, J. 2003. Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J. Clin. Invest. 112:1395-1406.

    CAS  PubMed  Google Scholar 

  • Yang, J., Marden, J.J., Fan, C., Sanlioglu, S., Weiss, R.M., and Ritchie, T.C. 2003. Genetic redox preconditioning differentially modulates AP-1 and NF kappa B responses following cardiac ischemia/reperfusion injury and protects against necrosis and apoptosis. Mol. Ther. J. Am. Soc. Gene Ther. 7:341-353.

    CAS  Google Scholar 

  • Yokomise, H., Fukuse, T., Hirata, T., Olikubo, K., and Go, T. 1996. Effect of recombinant hu-man adult T cell leukomia-derived factor on rat lung reperfusion injury. Respiration 61:99-104.

    Google Scholar 

  • Yoshioka, J., Schreiter, E.R., and Lee, R.T. 2006. Role of thioredoxin in cell growth through inter-actions with signaling molecules. Antioxid. Redox Signal. 8:2143-2151.

    CAS  PubMed  Google Scholar 

  • Yoshitake, S., Nanri, H., Fernando, M.R., and Minakami, S. 1994. Possible differences in the re-generative roles played by thioltransferase and thioredoxin for oxidatively damaged proteins. J. Biochem. (Tokyo) 116:42-46.

    CAS  Google Scholar 

  • Zhang, P., Liu, B., Kang, S.W., Seo, M.S., Rhee, S.G., and Obeid, L.M. 1997. Thioredoxin per-oxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J. Biol. Chem. 272:30615-30618.

    CAS  PubMed  Google Scholar 

  • Zhang, S., Yang, J.H., Yu, F., Zhao, J., Jiang, P., Chang, L., Tang, C., and Xu, J. 2006. Protective role of 3-nitro-N-methyl-salicylamide on isolated rat heart during 4 hours of cold storage and reperfusion. Transplant. Proc. 38:1247-1252.

    CAS  PubMed  Google Scholar 

  • Zhou, J., Damdimopoulos, A.E., Spyrou, G., and Brune, B. 2007. Thioredoxin 1 and thiore-doxin 2 have opposed regulatory functions on hypoxia inducible factor-1alpha. J. Biol. Chem. 282:7482-7490.

    CAS  PubMed  Google Scholar 

  • Zorov, D.B., Juhaszova, M., and Sollott, S.J. 2006. Mitochondrial ROS-induced ROS release: an update and review. Biochim. Biophys. Acta 1757:509-517.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Das, D.K., Goswami, S.K. (2008). Thioredoxin Signaling in the Ischemic Heart. In: Srivastava, A.K., Anand-Srivastava, M.B. (eds) Signal Transduction in the Cardiovascular System in Health and Disease. Advances in Biochemistry in Health and Disease, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09552-3_7

Download citation

Publish with us

Policies and ethics