Skip to main content

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 3))

Abstract

Angiotensin II mediates both growth and death pathways in the young developing heart and the failing heart. Although stimulation of both processes by the same agent might seem counterproductive, the cell is capable of specifically regulating the process that will dominate. The secret behind the specificity of the response lies in the characteristics of the plethora of signaling pathways initiated by angiotensin II. It is generally felt that alterations in these pathways play a pivotal role in both the normal development of the young heart and the onset of pathology in the failing heart. Although the recent introduction of transgenic animals has proven valuable in assessing the contribution of specific pathways in the regulation of growth and apoptosis, more information is required on the interplay between these pathways and mediators of growth and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akishita, M., Ito, M., Lehtonen, J.Y., Daviet, L., Dzau, V.J., and Horiuchi, M. 1999. Expression of the AT2 receptor developmentally programs extracellular signal-regulated kinase activity and influences fetal vascular growth. J. Clin. Invest. 103:63-71.

    Article  CAS  PubMed  Google Scholar 

  • Aplin, M., Christensen, G.L., Schneider, M., Heydorn, A., Gammeltoft, S., Kjolbye, A.L., Sheikh, S.P., and Hansen, J.L. 2007a. The angiotensin type 1 receptor activates extracellular signal-related kinases 1 and 2 by G protein-dependent and -independent pathways in cardiac myocytes and Langendorff-perfused hearts. Basic Res. Pharmacol. Toxicol. 100:289-295.

    CAS  Google Scholar 

  • Aplin, M., Christensen, G.L., Schneider, M., Heydorn, A., Gammeltoft, S., Kjolbye, A.L., Sheikh, S.P., and Hansen, J.L. 2007b. Differential extracellular signal-regulated kinases 1 and 2 activation by the angiotensin type 1 receptor supports distinct phenotypes of cardiac myocytes. Basic Res. Pharmacol. Toxicol. 100:296-301.

    CAS  Google Scholar 

  • Bader, M. 2002. Role of the local renin-angiotensin system in cardiac damage: a minireview fo-cusing on transgenic animal models. J. Mol. Cell. Cardiol. 34:1455-1462.

    Article  CAS  PubMed  Google Scholar 

  • Bascands, J.-L., Girolami, J.-P., Troly, M., Escargueil-Blanc, I., Nazzal, D., Salvayre, R., and Blaes, N. 2001. Angiotensin II induces phenotype-dependent apoptosis in vascular smooth mus-cle cells. Hypertension 38:1294-1299.

    Article  CAS  PubMed  Google Scholar 

  • Bedecs, K., Elbaz, N., Sutren, M., Masson, M., Susini, C., Strosberg, A.D., and Nahmias, C. 1997. Angiotensin II type 2 receptors mediate inhibition of mitogen-activated protein kinase cascade and functional activation of SHP-1 tyrosine phosphatase. Biochem. J. 325:449-454.

    CAS  PubMed  Google Scholar 

  • Bendall, J.K., Cave, A.C., Heymes, C., Gall, N., and Shah, A.M. 2002. Pivotal role of a gp91phox -containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105:293-296.

    Article  CAS  PubMed  Google Scholar 

  • Bhaskaran, M., Reddy, K., Radhakrishnan, N., Franki, N., Ding, G., and Singhal, P.C. 2003. An-giotensin II induces apoptosis in renal proximal tubular cells. Am. J. Physiol. 284:F955-F965.

    CAS  Google Scholar 

  • Bokemeyer, D., Schmi, U., and Kramer, H.J. 2000. Angiotensin II-induced growth of vascular smooth muscle cells requires an Src-dependent activation of the epidermal growth factor receptor. Kidney Int. 58:549-558.

    CAS  PubMed  Google Scholar 

  • Bonnet, F., Cao, Z., and Cooper, M.E. 2001. Apoptosis and angiotensin II: Yet another renal regu-latory system? Exp. Nephrol. 9:295-300.

    Article  CAS  PubMed  Google Scholar 

  • Booz, G.W., Day, J.N.E., and Baker, K.M. 2002. Interplay between the cardiac renin angiotensin system and JAK-STAT signaling: Role in cardiac hypertrophy, ischemia/reperfusion dysfunc-tion, and heart failure. J. Mol. Cell. Cardiol. 34:1443-1453.

    Article  CAS  PubMed  Google Scholar 

  • Clempus, R.E., and Griendling, K.K. 2006. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc. Res. 71:216-225.

    Article  CAS  PubMed  Google Scholar 

  • Cui, T.-X., Nakagami, H., Nahmias, C., Shiuchi, T., Takeda-Matsubara, Y., Li, J.-M., Wu, L., Iwai, M., and Horiuchi, M. 2002. Angiotensin II subtype 2 receptor activation inhibits insulin-induced phosphoinositide 3-kinase and Akt and induces apoptosis in PC12W cells. Mol. Endocrinol. 16:2113-2123.

    Article  CAS  PubMed  Google Scholar 

  • deBlois, D., Tea, B.-S., Dam, T.-V., Tremblay, J., and Hamet, P. 1997. Smooth muscle apop-tosis during vascular regression in spontaneously hypertensive rats. Hypertension 29:340-349.

    CAS  PubMed  Google Scholar 

  • Diep, Q.N., El Mabrouk, M., Yue, P., and Schiffrin, E.L. 2002. Effect of AT1 receptor block-ade on cardiac apoptosis in angiotensin II-induced hypertension. Am. J. Physiol. 282:H1635-H1641.

    CAS  Google Scholar 

  • Dimmeler, S., Rippmann, V., Weiland, U., Haendeler, J., and Zeiher, A.M. 1997. Angiotensin II in-duces apoptosis of human endothelial cells: Protective effect of nitric oxide. Circ. Res. 81:970-976.

    CAS  PubMed  Google Scholar 

  • Dimmeler, S., Breitschopf, K., Haendeler, J., and Zeiher, A.M. 1999. Dephosphorylation targets Bcl-2 for ubiquitinin-dependent degradation: a link between apoptosis and the proteasome path-way. J. Exp. Med. 189:1815-1822.

    Article  CAS  PubMed  Google Scholar 

  • Ding, G., Reddy, K., Kapasi, A.A., Franki, N., Gibbons, N., Kasinath, B.S., and Singhal, P.C. 2002. Angiotensin II induces apoptosis in rat glomerular epithelial cells. Am. J. Physiol. 283:F173-F180.

    CAS  Google Scholar 

  • Dostal, D.E., and Baker, K.M. 1999. The cardiac renin-angiotensin system: conceptual, or a regu-lator of cardiac function? Circ. Res. 85:643-650.

    CAS  PubMed  Google Scholar 

  • Dostal, D.E., Hunt, R.A., Kule, C.E., Bhat, G.J., Karoor, V., McWhinney, C.D., and Baker, K.M. 1997. Molecular mechanisms of angiotensin II in modulating cardiac function: intracardiac ef-fects and signal transduction pathways. J. Mol. Cell. Cardiol. 29:2893-2902.

    Article  CAS  PubMed  Google Scholar 

  • Eguchi, S., and Inagami, T. 2000. Signal transduction of angiotensin II type 1 receptor through receptor tyrosine kinase. Regul. Peptides 91:13-20.

    Article  CAS  Google Scholar 

  • Eguchi, S., Numaguchi, K., Iwasaki, H., Matsumoto, T., Yamakawa, T., Utsunomiya, H., Motley, E.D., Kawakatsu, H., Owada, K.M., Hirata, Y., Marumo, F., and Inagami, T. 1998. Calciumdependent epidermal growth factor receptor transactivaiton mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J. Biol. Chem. 273:8890-8896.

    Article  CAS  PubMed  Google Scholar 

  • Frank, G.D., Eguchi, S., Inagami, T., and Motley, E.D. 2001. N-acetylcysteine inhibits angiotensin II-mediated activation of extracellular signal-regulated kinase and epidermal growth factor re-ceptor. Biochem. Biophys. Res. Commun. 280:1116-1119.

    Article  CAS  PubMed  Google Scholar 

  • Gendron, L., Payet, M.D., and Gallo-Payet, N. 2003. The angiotensin type 2 receptor of an-giotensin II and neuronal differentiation: from observations to mechanisms. J. Mol. Endocrinol. 31:359-372.

    Article  CAS  PubMed  Google Scholar 

  • Giasson, E., and Meloche, S. 1995. Role of p70 S6 protein kinase in angiotensin II-induced protein synthesis in vascular smooth muscle cells. J. Biol. Chem. 270:5225-5231.

    Article  CAS  PubMed  Google Scholar 

  • Godeny, M.D., and Sayeski, P.P. 2006a. ANG II-induced cell proliferation is dually mediated by c-Src/Yes/Fyn-regulated ERK1/2 activation in the cytoplasm and PKCζ-controlled ERK1/2 ac-tivity within the nucleus. Am. J. Physiol. 291:C1297-1307.

    Article  CAS  Google Scholar 

  • Godeny, M.D., and Sayeski, P.P. 2006b. ERK1/2 regulates ANG II-dependent cell proliferation via cytoplasmic activation of RSK2 and nuclear activation of elk1. Am. J. Physiol. 291:C1308-1317.

    Article  CAS  Google Scholar 

  • Grammatopoulos, T.N., Morris, K., Bachar, C., Moore, S., Andres, R., and Weyhenmeyer, J.A. 2004. Angiotensin II attenuates chemical hypoxia-induced caspase-3 activation in primary cor-tical neuronal cultures. Brain Res. Bull. 62:297-303.

    CAS  Google Scholar 

  • Grishko, V., Pastukh, V., Solodushko, V., Gillespie, M., Azuma, J., and Schaffer, S. 2003. Apoptotic cascade initiated by angiotensin II in neonatal cardiomyocytes: Role of DNA damage. Am. J. Physiol. 285:H2364-2372.

    CAS  Google Scholar 

  • Haendeler, J., Tischler, V., Hoffmann, J., Zeiher, A.M., and Dimmeler, S. 2004. Low doses of reactive oxygen species protect endothelial cells from apoptosis by increasing thioredoxin-1 expression. FEBS Lett. 577:427-433.

    Article  CAS  PubMed  Google Scholar 

  • Hafizi, S., Wang, X., Chester, A.H., Yacoub, M.H., and Proud, C.G. 2004. ANG II activates ef-fectors of mTOR via PI3-K signaling in human coronary smooth muscle cells. Am. J. Physiol. 287:H1232-H1238.

    CAS  Google Scholar 

  • Halestrap, A.P., Clarke, S.J., and Javadov, S.A. 2004. Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc. Res. 61:372-385.

    Article  CAS  PubMed  Google Scholar 

  • Hamawaki, M., Coffman, T.M., Lashus, A., Koide, M., Zile, M.R., Oliverio, M.I., DeFreyte, G., Cooper, G. 4th , and Carabello, B.A. 1998. Pressure-overload hypertrophy is unabated in mice devoid of AT1A receptors. Am. J. Physiol. 274:H868-H873.

    Google Scholar 

  • Horiuchi, M., Hayashida, W., Kambe, T., Yamada, T., and Dzau, V.J. 1997. Angiotensin type 2 receptor dephosphorylates Bcl-2 by activating mitogen-activated protein kinase phosphatase-1 and induces apoptosis. J. Biol. Chem. 272:19022-19026.

    Article  CAS  PubMed  Google Scholar 

  • Hou, M., Pantev, E., Moeller, S., Erlinge, D., and Edvinsson, L. 2000. Angiotensin II type 1 receptors stimulate protein synthesis in human cardiac fibroblasts via a Ca2+ -sensitive PKC-dependent tyrosine kinase pathway. Acta Physiol. Scand. 168:301-309.

    CAS  Google Scholar 

  • Huang, X.C., Richards, E.M., and Sumners, C. 1996. Mitogen-activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotensin II type 2 receptors. J. Biol. Chem. 271:15635-15641.

    Article  CAS  PubMed  Google Scholar 

  • Iijima, Y., Laser, M., Shiraishi, H., Willey, C.D., Sundaravadivel, B., Xu, L., McDermott, P.J., and Kuppuswamy, D. 2002. Raf/MEK/ERK pathway controls protein kinase C-mediated p70S6K activation in adult cardiac muscle cells. J. Biol. Chem. 277:23065-23075.

    Article  CAS  PubMed  Google Scholar 

  • Inagami, T., and Senbonmatsu, T. 2001. Dual effects of angiotensin II type 2 receptor on cardio-vascular hypertrophy. Trends Cardiovasc. Med. 11:324-328.

    CAS  Google Scholar 

  • Joehren, O., Dendorfer, A., and Dominiak, P. 2004. Cardiovascular and renal function of an-giotensin II type-2 receptors. Cardiovasc. Res. 62:460-467.

    Article  Google Scholar 

  • Kaschina, E., and Unger, T. 2003. Angiotensin AT1/AT2 receptors: Regulation, signaling and func-tion. Blood Pressure 12:70-88.

    Article  CAS  PubMed  Google Scholar 

  • Lehtonen, J.Y.A., Horiuchi, M., Daviet, L., Akishita, M., and Dzau, V.J. 1999. Activation of the de novo biosynthesis of sphingolipids mediates angiotensin II type 2 receptor-induced apoptosis. J. Biol. Chem. 274:16901-16906.

    Article  CAS  PubMed  Google Scholar 

  • Li, D., Yang, B., Philips, M.I., and Mehta, J.L. 1999. Proapoptotic effects of ANG II in human coronary artery endothelial cells: role of AT1 receptor and PKC activation. Am. J. Physiol. 276:H786-H792.

    CAS  PubMed  Google Scholar 

  • Li, Y., Song, Y.-H., Mohler, J., and Delafontaine, P. 2006. ANG II induces apoptosis of human vascular smooth muscle via extrinsic pathway involving inhibition of Akt phosphorylation and increased FasL expression. Am. J. Physiol. 290:H2116-H2123.

    Article  CAS  Google Scholar 

  • Lijnen, P., and Petrov, V. 1999. Renin-angiotensin system, hypertrophy and gene expression in cardiac myocytes. J. Mol. Cell. Cardiol. 31:949-970.

    Article  CAS  PubMed  Google Scholar 

  • Lin, K.T., Xue, J.Y., Nomen, M., Spur, B., and Wong, P.Y. 1995. Peroxynitrite-induced apoptosis in HL-60 cells. J. Biol. Chem. 270:16487-16490.

    Article  CAS  PubMed  Google Scholar 

  • Mel’nikova, N.P., Timoshin, S.S., Jivotova, E.Y., Pelliniemi, L.J., Jokinen, E., and Abdelwahid, E. 2006. Angiotensin II activates apoptosis, proliferation and protein synthesis in the left heart ventricle of newborn albino rats. Int. J. Cardiol. 112:219-222.

    Article  PubMed  Google Scholar 

  • Mifune, M., Ohtsu, H., Suzuki, H., Nakashima, H., Brailoiu, E., Dun, N.J., Frank, G.D., Inagami, T., Higashiyama, S., Thomas, W.G., Eckhart, A.D., Dempsey, P.J., and Eguchi, S. 2005. G protein coupling and second messenger generation are indispensable for metalloproteasedependent, heparin-binding epidermal growth factor shedding through angiotensin II type-1 receptor. J. Biol. Chem. 280:26592-26599.

    Article  CAS  PubMed  Google Scholar 

  • Miura, S.-I., and Karnik, S.S. 2000. Ligand-independent signals from angiotensin II type 2 receptor induce apoptosis. EMBO J. 19:4026-4035.

    Article  CAS  PubMed  Google Scholar 

  • Miura, S.-I., Karnik, S.S., and Saku, K. 2005. Constitutively active homo-oligomeric angiotensin II type 2 receptor induces cell signaling independent of receptor conformation and ligand stim-ulation. J. Biol. Chem. 280:18237-18244.

    Article  CAS  PubMed  Google Scholar 

  • Miyashita, T., Krajewski, S., Krajewska, M., Wang, H.G., Lin, H.K., Liebermann, D.A., Hoffmann, B., and Reed, J.C. 1994. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799-1805.

    CAS  PubMed  Google Scholar 

  • Murasawa, S., Mori, Y., Nozawa, Y., Gotoh, N., Shibuya, M., Masaki, H., Maruyama, K., Tsutsumi, Y., Moriguchi, Y., Shibasaki, Y., Tanaka, Y., Iwasaka, T., Inada, M., and Matsubara, H. 1998a. Angiotensin II type 1 receptor-induced extracellular signal-regulated protein kinase activation is mediated by Ca2+ /calmodulin-dependent transactivation of epidermal growth factor receptor. Circ. Res. 82:1338-1348.

    CAS  PubMed  Google Scholar 

  • Murasawa, S., Mori, Y., Nozawa, Y., Masaki, H., Maruyama, K., Tsutsumi, Y., Moriguchi, Y., Shibasaki, Y., Tanaka, Y., Iwasaka, T., Inada, M., and Matsubara, H. 1998b. Role of calcium-sensitive tyrosine kinase Pyk2/CAKβ/RAFTK in angiotensin II-induced Ras/ERK signaling. Hypertension 32:668-675.

    CAS  PubMed  Google Scholar 

  • Nakamura, K., Fushimi, K., Kouchi, H., Mihara, K., Miyazaki, M., Ohe, T., and Namba, M. 1998. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-α and angiotensin II. Circulation 98:794-799.

    CAS  PubMed  Google Scholar 

  • Ohashi, H., Takagi, H., Oh, H., Suzuma, K., Suzuma, I., Miyamoto, N., Uemura, A., Watanabe, D., Murakami, T., Sugaya, T., Fukamizu, A., and Honda, Y. 2004. Phosphatidylinositol-3-kinase/Akt regulates angiotensin II-induced inhibition of apoptosis in microvascular endothe-lial cells by governing surviving expression and suppression of caspase-3 activity. Circ. Res. 94:785-793.

    Article  CAS  PubMed  Google Scholar 

  • Olson, E.R., Naugle, J.E., Zhang, X., Bomser, J.A., and Meszaros, J.G. 2005. Inhibition of car-diac fibroblast proliferation and myofibroblast differentiation by resveratrol. Am. J. Physiol. 288:H1131-H1138.

    CAS  Google Scholar 

  • Papp, M., Li, X., Zhuang, J., Wang, R., and Uhal, B.D. 2002. Angiotensin receptor subtype AT1 mediates alveolar epithelial cell apoptosis in response to ANG II. Am. J. Physiol. 282:L713-L718.

    CAS  Google Scholar 

  • Pierzchalski, P., Reiss, K., Cheng, W., Cirielli, C., Kajstura, J., Nitahara, J.A., Rizk, M., Capogrossi, M.C., and Anversa, P. 1997. P53 induces myocyte apoptosis via the activation of the renin-angiotensin system. Exp. Cell Res. 234:57-65.

    Article  CAS  PubMed  Google Scholar 

  • Pollman, M.J., Yamada, T., Horiuchi, M., and Gibbons, G.H. 1996. Vasoactive substances regulate vascular smooth muscle cell apoptosis. Circ. Res. 79:748-756.

    CAS  PubMed  Google Scholar 

  • Ricci, C., Pastukh, V., and Schaffer, S. 2005. Involvement of the mitochondrial permeability tran-sition pore in angiotensin II-mediated apoptosis. Exp. Clin. Cardiol. 10:160-164.

    CAS  PubMed  Google Scholar 

  • Roessig, L., Hermann, C., Haendeler, J., Assmus, B., Zeiher, A.M., and Dimmeler, S. 2002. Angiotensin II-induced upregulation of MAP kinase phosphatase-3 mRNA levels mediates en-dothelial cell apoptosis. Basic Res. Cardiol. 97:1-8.

    Article  Google Scholar 

  • Rostovtseva, T.K., Antonsson, B., Suzuki, M., Youle, R.J., Colombini, M., and Bezrukov, S.M. 2004. Bid, but not bax, regulates VDAC channels. J. Biol. Chem. 279:13575-13583.

    Article  CAS  PubMed  Google Scholar 

  • Ruf, S., Piper, H.M., and Schlueter, K.-D. 2002. Specific role for the extracellular signal-regulated kinase pathway in angiotensin II- but not phenylephrine-induced cardiac hypertrophy in vitro. Pfluegers Arch. Eur. J. Physiol. 443:483-490.

    Article  CAS  Google Scholar 

  • Sadoshima, J.-I., and Izumo, S. 1993. Signal transduction pathways of angiotensin II-induced c-fos gene expression in cardiac myocytes in vitro: roles of phospholipid-derived second messengers. Circ. Res. 73:424-438.

    CAS  PubMed  Google Scholar 

  • Sadoshima, J.-I., and Izumo, S. 1995. Rapamycin selectively inhibits angiotensin II-induced in-crease in protein synthesis in cardiac myocytes in vitro: potential role of 70-kD S6 kinase in angiotensin II-induced cardiac hypertrophy. Circ. Res. 77:1040-1052.

    CAS  PubMed  Google Scholar 

  • Sadoshima, J., Qiu, Z., Morgan, J.P., and Izumo, S. 1995. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes: The critical role of Ca2+ -dependent signaling. Circ. Res. 76:1-15.

    CAS  PubMed  Google Scholar 

  • Schroeder, D., Heger, J., Piper, H.M., and Euler, G. 2006. Angiotensin II stimulates apoptosis via TGF-β1 signaling in ventricular cardiomyocytes of rat. J. Mol. Med. 84:975-983.

    Article  CAS  Google Scholar 

  • Schunkert, H., Sadoshima, J.-I., Cornelius, T., Kagaya, Y., Weinberg, E.O., Izumo, S., Riegger, G., and Lorell, B.H. 1995. Angiotensin II-induced growth responses in isolated adult rat hearts: evidence for load-independent induction of cardiac protein synthesis by angiotensin II. Circ. Res. 76:489-497.

    CAS  PubMed  Google Scholar 

  • Seshiah, P.N., Weber, D.S., Rocic, P., Valppu, L., Taniyama, Y., and Griendling, K.K. 2002. An-giotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ. Res. 91:406-413.

    Article  PubMed  Google Scholar 

  • Seta, K., Nanamori, M., Modrall, J.G., Neubig, R.R., and Sadoshima, J. 2002. AT1 receptor mutant lacking heterotrimeric G protein coupling activates the Src-Ras-ERK pathway without nuclear translocation of ERKs. J. Biol. Chem. 277:9268-9277.

    Article  CAS  PubMed  Google Scholar 

  • Shenoy, U.V., Richards, E.M., Huang, X.C., and Sumners, C. 1999. Angiotensin II type 2 receptor-mediated apoptosis of cultured neurons from newborn rat brain. Endocrinology 140:500-509.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu, S., Narita, M., and Tsujimoto, Y. 1999. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483-487.

    Article  CAS  PubMed  Google Scholar 

  • Steckelings, U.M., Kaschina, E., and Unger, T. 2005. The AT2 receptor—A matter of love and hate. Peptides 26:1401-1409.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., and Weber, K.T. 1998. Cardiac remodeling by fibrous tissue: role of local factors and circulating hormones. Ann. Med. 30(Suppl. 1):3-8.

    CAS  PubMed  Google Scholar 

  • Suzuki, J., Iwai, M., Nakagami, H., Wu, L., Chen, R., Sugaya, T., Hamada, M., Hiwada, K., and Horiuchi, M. 2002. Role of angiotensin II-regulated apoptosis through distinct AT1 and AT2 receptors in neointimal formation. Circulation 106:847-853.

    Article  CAS  PubMed  Google Scholar 

  • Tian, B., Liu, J., Bitterman, P., and Bache, R.J. 2003. Angiotensin II modulates nitric oxide-induced cardiac fibroblast apoptosis by activation of Akt/PKB. Am. J. Physiol. 285:H1105-H1112.

    CAS  Google Scholar 

  • Touyz, R.M., and Schiffrin, E.L. 2000. Signal transduction mechanisms mediating the physiologi-cal and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol. Rev. 52:639-672.

    CAS  PubMed  Google Scholar 

  • Touyz, R.M., Cruzado, M., Tabet, F., Yao, G., Salomon, S., and Schiffrin, E.L. 2003. Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation. Can. J. Physiol. Pharmacol. 81:159-167.

    Article  CAS  PubMed  Google Scholar 

  • Ushio-Fukai, M., Griendling, K.K., Becker, P.L., Hilenski, L., Halleran, S., and Alexander, R.W. 2001. Epidermal growth factor receptor transactivation by angiotensin II requires reactive oxy-gen species in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 21:489-495.

    CAS  PubMed  Google Scholar 

  • Wang, D., Yu, X., and Brecher, P. 1999. Nitric oxide inhibits angiotensin II-induced activation of the calcium-sensitive tyrosine kinase proline-rich tyrosine kinase 2 without affecting epidermal growth factor receptor transactivation. J. Biol. Chem. 274:24342-24348.

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., Yu, X., Cohen, R.A., and Brecher, P. 2000. Distinct effects of N-acetylcysteine and nitric oxide on angiotensin II-induced epidermal growth factor receptor phosphorylation and intracellular Ca2+ levels. J. Biol. Chem. 275:12223-12230.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X.P., Zhang, R., Wu, K., Wu, L., and Dong, Y. 2004. Angiotensin II mediates acinar cell apoptosis during the development of rat pancreatic fibrosis by AT1R. Pancreas 29:264-270.

    Article  CAS  PubMed  Google Scholar 

  • Wenzel, S., Abdallah, Y., Helmig, S., Schaefer, C., Piper, H.M., and Schlueter, K.-D. 2006. Con-tribution of PI 3-kinase isoforms to angiotensin II- and α-adrenoceptor-mediated signalling pathways in cardiomyocytes. Cardiovasc. Res. 71: 352-362.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, T., Horiuchi, M., and Dzau, V.J. 1996. Angiotensin II type 2 receptor mediates pro-grammed cell death. Proc. Natl. Acad. Sci. USA 93:156-160.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, T., Akishita, M., Pollman, M.J., Gibbons, G.H., Dzau, V.J., and Horiuchi, M. 1998. Angiotensin II type 2 receptor mediates vascular smooth muscle cell apoptosis and antago-nizes angiotensin II type 1 receptor action: an in vitro gene transfer study. Life Sci. 63:PL289-PL295.

    Google Scholar 

  • Yamazaki, T., and Yazaki, Y. 1997. Is there major involvement of the renin-angiotensin system in cardiac hypertrophy? Circ. Res. 81:639-642.

    CAS  PubMed  Google Scholar 

  • Zhai, P., Yamamoto, M., Galeotti, J., Liu, J., Masurekar, M., Thaisz, J., Irie, K., Holle, E., Yu, X., Kupershmidt, S., Roden, D.M., Wagner, T., Yatani, A., Vatner, D.E., Vatner, S.F., and Sadoshima, J. 2005. Cardiac-specific overexpression of AT1 receptor mutant lacking Gαq /GαI coupling causes hypertrophy and bradycardia in transgenic mice. J. Clin. Invest. 115:3045-3056.

    Article  CAS  PubMed  Google Scholar 

  • Zhai, P., Galeotti, J., Liu, J., Holle, E., Yu, X., Wagner, T., and Sadoshima, J. 2006. An an-giotensin II type 1 receptor mutant lacking epidermal growth factor receptor transactivation does not induce angiotensin II-mediated cardiac hypertrophy. Circ. Res. 99:528-536.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Griendling, K.K., Dikalova, A., Owens, G.K., and Taylor, W.R. 2005. Vascular hypertro-phy in angiotensin II-induced hypertension is mediated by vascular smooth muscle cell-derived H2 O2 . Hypertension 46:732-737.

    Article  CAS  PubMed  Google Scholar 

  • Zou, Y., Komuro, I., Yamazaki, T., Kudoh, S., Aikawa, R., Zhu, W., Shiojima, I., Hiroi, Y., Tobe, K., Kadowaki, T., and Yazaki, Y. 1998. Cell type-specific angiotensin II-evoked signal transduction pathways: critical roles of Gβγ subunit, Src family, and Ras in cardiac fibroblasts. Circ. Res. 82:337-345.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schaffer, S.W., Mozaffari, M.S. (2008). Angiotensin II Signaling: Cell Growth and Apoptosis. In: Srivastava, A.K., Anand-Srivastava, M.B. (eds) Signal Transduction in the Cardiovascular System in Health and Disease. Advances in Biochemistry in Health and Disease, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09552-3_6

Download citation

Publish with us

Policies and ethics