Skip to main content

The Signaling Duel Between Virus and Host: Impact on Coxsackieviral Pathogenesis

  • Chapter
  • 880 Accesses

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 3))

Abstract

Coxsackievirus B3 (CVB3) is the primary human pathogen of viral myocarditis, a disease which causes sudden, unexpected death of infants and youth. Myocarditis was originally considered predominantly an inflammatory disease, but subsequent studies have revealed that direct myocardial injury by CVB3 prior to host immune responses contributes significantly to the progression of myocarditis. Heart transplantation is the only definitive treatment for serious myocarditis; thus, development of therapeutic intervention based on the pathogenesis of CVB3 becomes a preferred approach. Studies by our laboratory and others have shown that CVB3 infection triggers apoptosis of host cells through cytochrome C release and activation of multiple caspases. Furthermore, CVB3 infection activates several intracellular signaling pathways, such as the ERK pathway, the p38 MAPK pathway, and the PI3K/Akt pathway, for its efficient replication and release of progeny virions in order to complete its life cycle. Major cellular protein degradation systems, such as the ubiquitin–proteasome system, are also exploited by CVB3. These findings on the critical roles of host factors in pathogenesis of CVB3 thus provide us cellular targets for development of possible therapeutic interventions at molecular levels to restrain CVB3 infection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alessi, D.R., Deak, M., Casamayor, A., Caudwell, F.B., Morrice, N., Norman, D.G., Gaffney, P., Reese, C.B., MacDougall, C.N., Harbison, D., et al. (1997). Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 7, 776-789.

    Article  CAS  PubMed  Google Scholar 

  • Ashwell, J.D. (2006). The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nat Rev Immunol 6, 532-540.

    Article  CAS  PubMed  Google Scholar 

  • Badorff, C., Lee, G.H., Lamphear, B.J., Martone, M.E., Campbell, K.P., Rhoads, R.E., and Knowlton, K.U. (1999). Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 5, 320-326.

    Article  CAS  PubMed  Google Scholar 

  • Bell, Y.C., Semler, B.L., and Ehrenfeld, E. (1999). Requirements for RNA replication of a po-liovirus replicon by coxsackievirus B3 RNA polymerase. J Virol 73, 9413-9421.

    CAS  PubMed  Google Scholar 

  • Bergelson, J.M., Mohanty, J.G., Crowell, R.L., St John, N.F., Lublin, D.M., and Finberg, R.W. (1995). Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55). J Virol 69, 1903-1906.

    CAS  PubMed  Google Scholar 

  • Bergelson, J.M., Cunningham, J.A., Droguett, G., Kurt-Jones, E.A., Krithivas, A., Hong, J.S., Horwitz, M.S., Crowell, R.L., and Finberg, R.W. (1997). Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320-1323.

    Article  CAS  PubMed  Google Scholar 

  • Blume-Jensen, P., and Hunter, T. (2001). Oncogenic kinase signalling. Nature 411, 355-365.

    Article  CAS  PubMed  Google Scholar 

  • Campanella, M., de Jong, A.S., Lanke, K.W., Melchers, W.J., Willems, P.H., Pinton, P., Rizzuto, R., and van Kuppeveld, F.J. (2004). The coxsackievirus 2B protein suppresses apoptotic host cell responses by manipulating intracellular Ca2+ homeostasis. J Biol Chem 279, 18440-18450.

    Article  CAS  PubMed  Google Scholar 

  • Carthy, C.M., Granville, D.J., Watson, K.A., Anderson, D.R., Wilson, J.E., Yang, D., Hunt, D.W., and McManus, B.M. (1998). Caspase activation and specific cleavage of substrates after cox-sackievirus B3-induced cytopathic effect in HeLa cells. J Virol 72, 7669-7675.

    CAS  PubMed  Google Scholar 

  • Carthy, C.M., Yanagawa, B., Luo, H., Granville, D.J., Yang, D., Cheung, P., Cheung, C., Esfandiarei, M., Rudin, C.M., Thompson, C.B., et al. (2003). Bcl-2 and Bcl-xL overexpres-sion inhibits cytochrome c release, activation of multiple caspases, and virus release following coxsackievirus B3 infection. Virology 313, 147-157.

    Article  CAS  PubMed  Google Scholar 

  • Chang, L., and Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature 410, 37-40. Chao, D.T., and Korsmeyer, S.J. (1998). BCL-2 family: regulators of cell death. Annu Rev Im-munol 16, 395-419.

    Google Scholar 

  • Chow, L.H., Beisel, K.W., and McManus, B.M. (1992). Enteroviral infection of mice with severe combined immunodeficiency. Evidence for direct viral pathogenesis of myocardial injury. Lab Invest 66, 24-31.

    CAS  PubMed  Google Scholar 

  • Coyne, C.B., and Bergelson, J.M. (2006). Virus-induced Abl and Fyn kinase signals permit cox-sackievirus entry through epithelial tight junctions. Cell 124, 119-131.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham, K.A., Chapman, N.M., and Carson, S.D. (2003). Caspase-3 activation and ERK phosphorylation during CVB3 infection of cells: influence of the coxsackievirus and adenovirus receptor and engineered variants. Virus Res 92, 179-186.

    Article  CAS  PubMed  Google Scholar 

  • de Jong, A.S., Visch, H.J., de Mattia, F., van Dommelen, M.M., Swarts, H.G., Luyten, T., Callewaert, G., Melchers, W.J., Willems, P.H., and van Kuppeveld, F.J. (2006). The coxsack-ievirus 2B protein increases efflux of ions from the endoplasmic reticulum and Golgi, thereby inhibiting protein trafficking through the Golgi. J Biol Chem 281, 14144-14150.

    Article  PubMed  Google Scholar 

  • Delcommenne, M., Tan, C., Gray, V., Rue, L., Woodgett, J., and Dedhar, S. (1998). Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci USA 95, 11211-11216.

    Article  CAS  PubMed  Google Scholar 

  • Dorner, A., Xiong, D., Couch, K., Yajima, T., and Knowlton, K.U. (2004). Alternatively spliced soluble coxsackie-adenovirus receptors inhibit coxsackievirus infection. J Biol Chem 279, 18497-18503.

    Article  PubMed  Google Scholar 

  • Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42.

    Article  CAS  PubMed  Google Scholar 

  • Ehrenfeld, E. (1982). Poliovirus-induced inhibition of host-cell protein synthesis. Cell 28, 435-436.

    Article  CAS  PubMed  Google Scholar 

  • Esfandiarei, M., Luo, H., Yanagawa, B., Suarez, A., Dabiri, D., Zhang, J., and McManus, B.M. (2004). Protein kinase B/Akt regulates coxsackievirus B3 replication through a mechanism which is not caspase dependent. J Virol 78, 4289-4298.

    Article  CAS  PubMed  Google Scholar 

  • Esfandiarei, M., Suarez, A., Amaral, A., Si, X., Rahmani, M., Dedhar, S., and McManus, B.M. (2006). Novel role for integrin-linked kinase in modulation of coxsackievirus B3 replication and virus-induced cardiomyocyte injury. Circ Res 99, 354-361.

    Article  CAS  PubMed  Google Scholar 

  • Glotzer, M., Murray, A.W., and Kirschner, M.W. (1991). Cyclin is degraded by the ubiquitin path-way. Nature 349, 132-138.

    Article  CAS  PubMed  Google Scholar 

  • Green, D.R. (2005). Apoptotic pathways: ten minutes to dead. Cell 121, 671-674.

    Article  CAS  PubMed  Google Scholar 

  • Henke, A., Nestler, M., Strunze, S., Saluz, H.P., Hortschansky, P., Menzel, B., Martin, U., Zell, R., Stelzner, A., and Munder, T. (2001). The apoptotic capability of coxsackievirus B3 is influenced by the efficient interaction between the capsid protein VP2 and the proapoptotic host protein Siva. Virology 289, 15-22.

    Article  CAS  PubMed  Google Scholar 

  • Hennessy, B.T., Smith, D.L., Ram, P.T., Lu, Y., and Mills, G.B. (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4, 988-1004.

    Article  CAS  PubMed  Google Scholar 

  • Hicke, L. (2001). Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2, 195-201.

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa, K., Kim, A., Han, H.S., Han, J., Jun, H.S., and Yoon, J.W. (2003). Effect of p38 mitogen-activated protein kinase on the replication of encephalomyocarditis virus. J Virol 77, 5649-5656.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y., Benedict, M.A., Wu, D., Inohara, N., and Nunez, G. (1998). Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci USA 95, 4386-4391.

    Article  CAS  PubMed  Google Scholar 

  • Huber, M., Selinka, H.C., and Kandolf, R. (1997). Tyrosine phosphorylation events during cox-sackievirus B3 replication. J Virol 71, 595-600.

    CAS  PubMed  Google Scholar 

  • Huber, M., Watson, K.A., Selinka, H.C., Carthy, C.M., Klingel, K., McManus, B.M., and Kandolf, R. (1999). Cleavage of RasGAP and phosphorylation of mitogen-activated protein kinase in the course of coxsackievirus B3 replication. J Virol 73, 3587-3594.

    CAS  PubMed  Google Scholar 

  • Hufnagel, G., Chapman, N., and Tracy, S. (1995). A non-cardiovirulent strain of coxsackievirus B3 causes myocarditis in mice with severe combined immunodeficiency syndrome. Eur Heart J 16 Suppl O, 18-19.

    PubMed  Google Scholar 

  • Hunter, T. (1995). Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225-236.

    Article  CAS  PubMed  Google Scholar 

  • Hunter, T., and Sefton, B.M. (1980). Transforming gene product of Rous sarcoma virus phospho-rylates tyrosine. Proc Natl Acad Sci USA 77, 1311-1315.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, G.L., and Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912.

    Article  CAS  PubMed  Google Scholar 

  • Kandolf, R., Ameis, D., Kirschner, P., Canu, A., and Hofschneider, P.H. (1987). In situ detection of enteroviral genomes in myocardial cells by nucleic acid hybridization: an approach to the diagnosis of viral heart disease. Proc Natl Acad Sci USA 84, 6272-6276.

    Article  CAS  PubMed  Google Scholar 

  • Kerekatte, V., Keiper, B.D., Badorff, C., Cai, A., Knowlton, K.U., and Rhoads, R.E. (1999). Cleav-age of poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo: another mechanism for host protein synthesis shutoff? J Virol 73, 709-717.

    CAS  PubMed  Google Scholar 

  • Kharbanda, S., Pandey, P., Schofield, L., Israels, S., Roncinske, R., Yoshida, K., Bharti, A., Yuan, Z.M., Saxena, S., Weichselbaum, R., et al. (1997). Role for Bcl-xL as an inhibitor of cytosolic cytochrome C accumulation in DNA damage-induced apoptosis. Proc Natl Acad Sci USA 94, 6939-6942.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.M., Park, J.H., Chung, S.K., Kim, J.Y., Hwang, H.Y., Chung, K.C., Jo, I., Park, S.I., and Nam, J.H. (2004). Coxsackievirus B3 infection induces cyr61 activation via JNK to mediate cell death. J Virol 78, 13479-13488.

    Article  CAS  PubMed  Google Scholar 

  • Klingel, K., Rieger, P., Mall, G., Selinka, H.C., Huber, M., and Kandolf, R. (1998). Visualization of enteroviral replication in myocardial tissue by ultrastructural in situ hybridization: identification of target cells and cytopathic effects. Lab Invest 78, 1227-1237.

    CAS  PubMed  Google Scholar 

  • Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., and Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P., Aitken, K., Kong, Y.Y., Opavsky, M.A., Martino, T., Dawood, F., Wen, W.H., Kozieradzki, I., Bachmaier, K., Straus, D., et al. (2000). The tyrosine kinase p56lck is essential in coxsackievirus B3-mediated heart disease. Nat Med 6, 429-434.

    Article  CAS  PubMed  Google Scholar 

  • Luo, H., Yanagawa, B., Zhang, J., Luo, Z., Zhang, M., Esfandiarei, M., Carthy, C., Wilson, J.E., Yang, D., and McManus, B.M. (2002). Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. J Virol 76, 3365-3373.

    Article  CAS  PubMed  Google Scholar 

  • Luo, H., Zhang, J., Dastvan, F., Yanagawa, B., Reidy, M.A., Zhang, H.M., Yang, D., Wilson, J.E., and McManus, B.M. (2003). Ubiquitin-dependent proteolysis of cyclin D1 is associated with coxsackievirus-induced cell growth arrest. J Virol 77, 1-9. by the efficient interaction between the capsid protein VP2 and the proapoptotic host protein Siva. Virology 289, 15-22.

    Google Scholar 

  • Hennessy, B.T., Smith, D.L., Ram, P.T., Lu, Y., and Mills, G.B. (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4, 988-1004.

    Article  CAS  PubMed  Google Scholar 

  • Hicke, L. (2001). Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2, 195-201.

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa, K., Kim, A., Han, H.S., Han, J., Jun, H.S., and Yoon, J.W. (2003). Effect of p38 mitogen-activated protein kinase on the replication of encephalomyocarditis virus. J Virol 77, 5649-5656.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y., Benedict, M.A., Wu, D., Inohara, N., and Nunez, G. (1998). Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci USA 95, 4386-4391.

    Article  CAS  PubMed  Google Scholar 

  • Huber, M., Selinka, H.C., and Kandolf, R. (1997). Tyrosine phosphorylation events during cox-sackievirus B3 replication. J Virol 71, 595-600.

    CAS  PubMed  Google Scholar 

  • Huber, M., Watson, K.A., Selinka, H.C., Carthy, C.M., Klingel, K., McManus, B.M., and Kandolf, R. (1999). Cleavage of RasGAP and phosphorylation of mitogen-activated protein kinase in the course of coxsackievirus B3 replication. J Virol 73, 3587-3594.

    CAS  PubMed  Google Scholar 

  • Hufnagel, G., Chapman, N., and Tracy, S. (1995). A non-cardiovirulent strain of coxsackievirus B3 causes myocarditis in mice with severe combined immunodeficiency syndrome. Eur Heart J 16 Suppl O, 18-19.

    Google Scholar 

  • Hunter, T. (1995). Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225-236.

    Article  CAS  PubMed  Google Scholar 

  • Hunter, T., and Sefton, B.M. (1980). Transforming gene product of Rous sarcoma virus phospho-rylates tyrosine. Proc Natl Acad Sci USA 77, 1311-1315.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, G.L., and Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912.

    Article  CAS  PubMed  Google Scholar 

  • Kandolf, R., Ameis, D., Kirschner, P., Canu, A., and Hofschneider, P.H. (1987). In situ detection of enteroviral genomes in myocardial cells by nucleic acid hybridization: an approach to the diagnosis of viral heart disease. Proc Natl Acad Sci USA 84, 6272-6276.

    Article  CAS  PubMed  Google Scholar 

  • Kerekatte, V., Keiper, B.D., Badorff, C., Cai, A., Knowlton, K.U., and Rhoads, R.E. (1999). Cleav-age of poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo: another mechanism for host protein synthesis shutoff? J Virol 73, 709-717.

    CAS  PubMed  Google Scholar 

  • Kharbanda, S., Pandey, P., Schofield, L., Israels, S., Roncinske, R., Yoshida, K., Bharti, A., Yuan, Z.M., Saxena, S., Weichselbaum, R., et al. (1997). Role for Bcl-xL as an inhibitor of cytosolic cytochrome C accumulation in DNA damage-induced apoptosis. Proc Natl Acad Sci USA 94, 6939-6942.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.M., Park, J.H., Chung, S.K., Kim, J.Y., Hwang, H.Y., Chung, K.C., Jo, I., Park, S.I., and Nam, J.H. (2004). Coxsackievirus B3 infection induces cyr61 activation via JNK to mediate cell death. J Virol 78, 13479-13488.

    Article  CAS  PubMed  Google Scholar 

  • Klingel, K., Rieger, P., Mall, G., Selinka, H.C., Huber, M., and Kandolf, R. (1998). Visualization of enteroviral replication in myocardial tissue by ultrastructural in situ hybridization: identification of target cells and cytopathic effects. Lab Invest 78, 1227-1237.

    CAS  PubMed  Google Scholar 

  • Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S., and Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P., Aitken, K., Kong, Y.Y., Opavsky, M.A., Martino, T., Dawood, F., Wen, W.H., Kozieradzki, I., Bachmaier, K., Straus, D., et al. (2000). The tyrosine kinase p56lck is essential in coxsackievirus B3-mediated heart disease. Nat Med 6, 429-434.

    Article  CAS  PubMed  Google Scholar 

  • Luo, H., Yanagawa, B., Zhang, J., Luo, Z., Zhang, M., Esfandiarei, M., Carthy, C., Wilson, J.E., Yang, D., and McManus, B.M. (2002). Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. J Virol 76, 3365-3373.

    Article  CAS  PubMed  Google Scholar 

  • Luo, H., Zhang, J., Dastvan, F., Yanagawa, B., Reidy, M.A., Zhang, H.M., Yang, D., Wilson, J.E., and McManus, B.M. (2003). Ubiquitin-dependent proteolysis of cyclin D1 is associated with coxsackievirus-induced cell growth arrest. J Virol 77, 1-9.

    Article  CAS  PubMed  Google Scholar 

  • Maehama, T., and Dixon, J.E. (1998). The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273, 13375-13378.

    Article  CAS  PubMed  Google Scholar 

  • Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science 298, 1912-1934.

    Article  CAS  PubMed  Google Scholar 

  • McManus, B.M., Chow, L.H., Wilson, J.E., Anderson, D.R., Gulizia, J.M., Gauntt, C.J., Klingel, K.E., Beisel, K.W., and Kandolf, R. (1993). Direct myocardial injury by enterovirus: a central role in the evolution of murine myocarditis. Clin Immunol Immunopathol 68, 159-169.

    Article  CAS  PubMed  Google Scholar 

  • Metcalf, D., Di Rago, L., Mifsud, S., Hartley, L., and Alexander, W.S. (2000). The development of fatal myocarditis and polymyositis in mice heterozygous for IFN-gamma and lacking the SOCS-1 gene. Proc Natl Acad Sci USA 97, 9174-9179.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson-Weller, A., and Wang, C.E. (1994). Structure and function of decay accelerating factor CD55. J Lab Clin Med 123, 485-491.

    CAS  PubMed  Google Scholar 

  • Opavsky, M.A., Martino, T., Rabinovitch, M., Penninger, J., Richardson, C., Petric, M., Trinidad, C., Butcher, L., Chan, J., and Liu, P.P. (2002). Enhanced ERK-1/2 activation in mice susceptible to coxsackievirus-induced myocarditis. J Clin Invest 109, 1561-1569.

    CAS  PubMed  Google Scholar 

  • Overbeck, A.F., Brtva, T.R., Cox, A.D., Graham, S.M., Huff, S.Y., Khosravi-Far, R., Quilliam, L.A., Solski, P.A., and Der, C.J. (1995). Guanine nucleotide exchange factors: activators of Ras superfamily proteins. Mol Reprod Dev 42, 468-476.

    Article  CAS  PubMed  Google Scholar 

  • Pagano, M., Tam, S.W., Theodoras, A.M., Beer-Romero, P., Del Sal, G., Chau, V., Yew, P.R., Draetta, G.F., and Rolfe, M. (1995). Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269, 682-685.

    Article  CAS  PubMed  Google Scholar 

  • Palombella, V.J., Rando, O.J., Goldberg, A.L., and Maniatis, T. (1994). The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78, 773-785.

    Article  CAS  PubMed  Google Scholar 

  • Peng, T., Sadusky, T., Li, Y., Coulton, G.R., Zhang, H., and Archard, L.C. (2001). Altered expres-sion of Bag-1 in coxsackievirus B3 infected mouse heart. Cardiovasc Res 50, 46-55.

    Article  CAS  PubMed  Google Scholar 

  • Quilliam, L.A., Khosravi-Far, R., Huff, S.Y., and Der, C.J. (1995). Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins. Bioessays 17, 395-404.

    Article  CAS  PubMed  Google Scholar 

  • Rahaus, M., Desloges, N., and Wolff, M.H. (2005). ORF61 protein of Varicella-zoster virus influ-ences JNK/SAPK and p38/MAPK phosphorylation. J Med Virol 76, 424-433.

    Article  CAS  PubMed  Google Scholar 

  • Reimold, A.M., Kim, J., Finberg, R., and Glimcher, L.H. (2001). Decreased immediate inflamma-tory gene induction in activating transcription factor-2 mutant mice. Int Immunol 13, 241-248.

    Article  CAS  PubMed  Google Scholar 

  • Roos-Mattjus, P., and Sistonen, L. (2004). The ubiquitin-proteasome pathway. Ann Med 36, 285-295.

    Article  CAS  PubMed  Google Scholar 

  • Salako, M.A., Carter, M.J., and Kass, G.E. (2006). Coxsackievirus protein 2BC blocks host cell apoptosis by inhibiting caspase-3. J Biol Chem 281, 16296-16304.

    Article  CAS  PubMed  Google Scholar 

  • Scheffner, M., Werness, B.A., Huibregtse, J.M., Levine, A.J., and Howley, P.M. (1990). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129-1136.

    Article  CAS  PubMed  Google Scholar 

  • Shenoy-Scaria, A.M., Kwong, J., Fujita, T., Olszowy, M.W., Shaw, A.S., and Lublin, D.M. (1992). Signal transduction through decay-accelerating factor. Interaction of glycosyl-phosphatidylinositol anchor and protein tyrosine kinases p56lck and p59fyn 1. J Immunol 149, 3535-3541.

    CAS  PubMed  Google Scholar 

  • Si, X., Luo, H., Morgan, A., Zhang, J., Wong, J., Yuan, J., Esfandiarei, M., Gao, G., Cheung, C., and McManus, B.M. (2005a). Stress-activated protein kinases are involved in coxsackievirus B3 viral progeny release. J Virol 79, 13875-13881.

    Article  CAS  PubMed  Google Scholar 

  • Si, X., McManus, B.M., Zhang, J., Yuan, J., Cheung, C., Esfandiarei, M., Suarez, A., Morgan, A., and Luo, H. (2005b). Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway. J Virol 79, 8014-8023.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, L.A., Carthy, C.M., Yang, D., Saad, K., Wong, D., Schreiner, G., Stanton, L.W., and McManus, B.M. (2000). Host gene regulation during coxsackievirus B3 infection in mice: as-sessment by microarrays. Circ Res 87, 328-334.

    CAS  PubMed  Google Scholar 

  • Thorburn, A. (2004). Death receptor-induced cell killing. Cell Signal 16, 139-144.

    Article  CAS  PubMed  Google Scholar 

  • Tocque, B., Delumeau, I., Parker, F., Maurier, F., Multon, M.C., and Schweighoffer, F. (1997). Ras-GTPase activating protein (GAP): a putative effector for Ras. Cell Signal 9, 153-158.

    Article  CAS  PubMed  Google Scholar 

  • Tonks, N.K. (2005). Redox redux: revisiting PTPs and the control of cell signaling. Cell 121, 667-670.

    Article  CAS  PubMed  Google Scholar 

  • Uren, A.G., Pakusch, M., Hawkins, C.J., Puls, K.L., and Vaux, D.L. (1996). Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors. Proc Natl Acad Sci USA 93, 4974-4978.

    Article  CAS  PubMed  Google Scholar 

  • van Kuppeveld, F.J., Hoenderop, J.G., Smeets, R.L., Willems, P.H., Dijkman, H.B., Galama, J.M., and Melchers, W.J. (1997a). Coxsackievirus protein 2B modifies endoplasmic reticulum mem-brane and plasma membrane permeability and facilitates virus release. EMBO J 16, 3519-3532.

    Article  PubMed  Google Scholar 

  • van Kuppeveld, F.J., Melchers, W.J., Kirkegaard, K., and Doedens, J.R. (1997b). Structure-function analysis of coxsackie B3 virus protein 2B. Virology 227, 111-118.

    Article  Google Scholar 

  • Wolf, D.H., and Hilt, W. (2004). The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta 1695, 19-31.

    Article  CAS  PubMed  Google Scholar 

  • Woodruff, J.F. (1980). Viral myocarditis. A review. Am J Pathol 101, 425-484.

    CAS  PubMed  Google Scholar 

  • Yanagawa, B., Spiller, O.B., Proctor, D.G., Choy, J., Luo, H., Zhang, H.M., Suarez, A., Yang, D., and McManus, B.M. (2004). Soluble recombinant coxsackievirus and adenovirus receptor abrogates coxsackievirus b3-mediated pancreatitis and myocarditis in mice. J Infect Dis 189, 1431-1439.

    Article  CAS  PubMed  Google Scholar 

  • Yang, D., Yu, J., Luo, Z., Carthy, C.M., Wilson, J.E., Liu, Z., and McManus, B.M. (1999). Viral myocarditis: identification of five differentially expressed genes in coxsackievirus B3-infected mouse heart. Circ Res 84, 704-712.

    CAS  PubMed  Google Scholar 

  • Yasukawa, H., Yajima, T., Duplain, H., Iwatate, M., Kido, M., Hoshijima, M., Weitzman, M.D., Nakamura, T., Woodard, S., Xiong, D., et al. (2003). The suppressor of cytokine signaling-1 (SOCS1) is a novel therapeutic target for enterovirus-induced cardiac injury. J Clin Invest 111, 469-478.

    CAS  PubMed  Google Scholar 

  • Yuan, J. (2006). Divergence from a dedicated cellular suicide mechanism: exploring the evolution of cell death. Mol Cell 23, 1-12.

    Article  PubMed  Google Scholar 

  • Yuan, J., Zhang, J., Wong, B.W., Si, X., Wong, J., Yang, D., and Luo, H. (2005). Inhibition of glycogen synthase kinase 3beta suppresses coxsackievirus-induced cytopathic effect and apop-tosis via stabilization of beta-catenin. Cell Death Differ 12, 1097-1106.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H.M., Yanagawa, B., Cheung, P., Luo, H., Yuan, J., Chau, D., Wang, A., Bohunek, L., Wilson, J.E., McManus, B.M., et al. (2002). Nip21 gene expression reduces coxsackievirus B3 replication by promoting apoptotic cell death via a mitochondria-dependent pathway. Circ Res 90,1251-1258.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H.M., Yuan, J., Cheung, P., Luo, H., Yanagawa, B., Chau, D., Stephan-Tozy, N., Wong, B.W., Zhang, J., Wilson, J.E., et al. (2003). Overexpression of interferon-gamma-inducible GTPase inhibits coxsackievirus B3-induced apoptosis through the activation of the phos-phatidylinositol 3-kinase/Akt pathway and inhibition of viral replication. J Biol Chem 278, 33011-33019.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H.M., Yuan, J., Cheung, P., Chau, D., Wong, B.W., McManus, B.M., and Yang, D. (2005). Gamma interferon-inducible protein 10 induces HeLa cell apoptosis through a p53-dependent pathway initiated by suppression of human papillomavirus type 18 E6 and E7 expression. Mol Cell Biol 25, 6247-6258.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Si, X., Marchant, D., Yang, D., McManus, B.M., Luo, H. (2008). The Signaling Duel Between Virus and Host: Impact on Coxsackieviral Pathogenesis. In: Srivastava, A.K., Anand-Srivastava, M.B. (eds) Signal Transduction in the Cardiovascular System in Health and Disease. Advances in Biochemistry in Health and Disease, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09552-3_14

Download citation

Publish with us

Policies and ethics