Skip to main content

Regulatory Role of TGF-β in Cardiac Myofibroblast Function and Post-MI Cardiac Fibrosis: Key Roles of Smad7 and c-Ski

  • Chapter
Signal Transduction in the Cardiovascular System in Health and Disease

Abstract

The molecular pathways that couple increased hemodynamic load to cardiac hypertrophy, cardiac fibrosis, and heart failure are incompletely understood. Cardiac fibrosis is recognized as a major disease modifier and as such is important in the pathogenesis of heart failure of most etiologies. This review is focused on R-Smad signaling in cardiac myofibroblasts and their role in remodeling the extracellular matrix of the failing myocardium after myocardial infarction (MI). As major mediators of TGF-β1 signaling in cardiac fibroblasts and myofibroblasts as well as myocytic cells, Smad proteins are emerging as an important postreceptor class in post-MI heart failure. How cytosolic c-Ski and C184M proteins influence R-Smads (and possibly Smad7 itself) in cardiac myofibroblasts, and how c-Ski expression influences cardiac myofibroblast function are largely unknown. We suggest that decreased Smad7 expression and altered intracellular c-Ski expression and/or distribution may contribute to chronic imbalance of R-Smad activation in classic TGF-β1 signaling in the context of cardiac myofibroblast function. Thus, reduced and insufficient expression and activation of c-Ski and Smad7 may contribute to abnormal stimulation of collagen synthesis by these cells. Exploitation of Smad7 and c-Ski in the modulation of cardiac myofibroblast function may provide the experimental basis for the development of highly specific drugs for treating heart failure with attendant cardiac fibrosis. Future studies to identify and characterize Smad-associated factors responsible for induction of pathological cardiac hypertrophy are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyoshi, S., Inoue, H., Hanai, J., Kusanagi, K., Nemoto, N., Miyazono, K., and Kawabata, M. 1999. c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J. Biol. Chem. 274:35269-35277.

    Google Scholar 

  • Bartosova, D., Chvapil, M., Korecky, B., Poupa, O., Rakusan, K., Turek, Z., and Vizek, M. 1969. The growth of the muscular and collagenous parts of the rat heart in various forms of car-diomegaly. J. Physiol. (London) 200:285-295.

    CAS  Google Scholar 

  • Bashey, R.I., Martinez Hernandez, A., and Jimenez, S.A. 1992. Isolation, characterization, and lo-calization of cardiac collagen type VI. Associations with other extracellular matrix components. Circ. Res. 70:1006-1017.

    CAS  PubMed  Google Scholar 

  • Birchmeier, C., and Birchmeier, W. 1993. Molecular aspects of mesenchymal-epithelial interac-tions. Annu. Rev. Cell Biol. 9:511-540.

    CAS  PubMed  Google Scholar 

  • Blank, J.L., Ross, A.H., and Exton, J.H. 1991. Purification and characterization of two G-proteins that activate the beta 1 isozyme of phosphoinositide-specific phospholipase C. Identification as members of the Gq class. J. Biol. Chem. 266:18206-18216.

    CAS  PubMed  Google Scholar 

  • Brand, T., and Schneider, M.D. 1995. The TGF beta superfamily in myocardium: ligands, recep-tors, transduction, and function. J. Mol. Cell. Cardiol. 27:5-18.

    CAS  PubMed  Google Scholar 

  • Brand, T., and Schneider, M.D. 1996. Transforming growth factor-beta signal transduction. Circ. Res. 78:173-179.

    CAS  PubMed  Google Scholar 

  • Briones-Orta, M.A., Sosa-Garrocho, M., Moreno-Alvarez, P., Fonseca-Sanchez, M.A., and Macias-Silva, M. 2006. SnoN co-repressor binds and represses smad7 gene promoter. Biochem. Biophys. Res. Commun. 341:889-894.

    CAS  PubMed  Google Scholar 

  • Brooks, W.W., and Conrad, C.H. 2000. Myocardial fibrosis in transforming growth factor beta(1)heterozygous mice. J Mol. Cell. Cardiol. 32:187-195.

    CAS  PubMed  Google Scholar 

  • Butt, R.P., and Bishop, J.E. 1997. Mechanical load enhances the stimulatory effect of serum growth factors on cardiac fibroblast procollagen synthesis. J. Mol. Cell. Cardiol. 29:1141-1151.

    CAS  PubMed  Google Scholar 

  • Butt, R.P., Laurent, G.J., and Bishop, J.E. 1995. Collagen production and replication by cardiac fibroblasts is enhanced in response to diverse classes of growth factors. Eur. J. Cell Biol. 68:330-335.

    CAS  PubMed  Google Scholar 

  • Caulfield, J.B., and Borg, T.K. 1979. The collagen network of the heart. Lab. Invest. 40:364-372.

    CAS  PubMed  Google Scholar 

  • Chareonthaitawee, P., Christian, T.F., Hirose, K., Gibbons, R.J., and Rumberger, J.A. 1995. Rela-tion of initial infarct size to extent of left ventricular remodeling in the year after acute myocar-dial infarction. J. Am. Coll. Cardiol. 25:567-573.

    CAS  PubMed  Google Scholar 

  • Chen, X., Rubock, M.J., and Whitman, M. 1996. A transcriptional partner for MAD proteins in TGF-beta signalling. Nature 383:691-696.

    CAS  PubMed  Google Scholar 

  • Chen, Y.G., Hata, A., Lo, R.S., Wotton, D., Shi, Y., Pavletich, N., and Massague, J. 1998. Deter-minants of specificity in TGF-beta signal transduction. Genes Dev. 12:2144-2152.

    CAS  PubMed  Google Scholar 

  • Christian, J.L., and Nakayama, T. 1999. Can’t get no SMADisfaction: Smad proteins as positive and negative regulators of TGF-beta family signals. Bioessays 21:382-390.

    CAS  PubMed  Google Scholar 

  • Cleutjens, J.P., Verluyten, M.J., Smits, J.F., and Daemen, M.J. 1995. Collagen remodeling after myocardial infarction in the rat heart. Am. J. Pathol. 147:325-338

    CAS  PubMed  Google Scholar 

  • Cleutjens, J.P., Blankesteijn, W.M., Daemen, M.J., and Smits, J.F. 1999. The infarcted my-ocardium: simply dead tissue, or a lively target for therapeutic interventions. Cardiovasc. Res. 44:232-241.

    CAS  PubMed  Google Scholar 

  • Cohen, S.B., Zheng, G., Heyman, H.C., and Stavnezer, E. 1999. Heterodimers of the SnoN and Ski oncoproteins form preferentially over homodimers and are more potent transforming agents. Nucleic Acids Res. 27:1006-1014.

    CAS  PubMed  Google Scholar 

  • Colmenares, C., and Stavnezer, E. 1989. The ski oncogene induces muscle differentiation in quail embryo cells. Cell 59:293-303.

    CAS  PubMed  Google Scholar 

  • Colucci, W.S., and Braunwald, E. 1997. Pathophysiology of heart failure. In Heart Failure, E. Braunwald (ed.). Saunders, Philadelphia, 394-420.

    Google Scholar 

  • Dahl, R., Kieslinger, M., Beug, H., and Hayman, M.J. 1998a. Transformation of hematopoietic cells by the Ski oncoprotein involves repression of retinoic acid receptor signaling. Proc. Natl. Acad. Sci. USA 95:11187-11192.

    CAS  PubMed  Google Scholar 

  • Dahl, R., Wani, B., and Hayman, M.J. 1998b. The Ski oncoprotein interacts with Skip, the human homolog of Drosophila Bx42. Oncogene 16:1579-1586.

    CAS  PubMed  Google Scholar 

  • Denissova, N.G., and Liu, F. 2004. Repression of endogenous Smad7 by Ski. J. Biol. Chem. 279:28143-28148.

    CAS  PubMed  Google Scholar 

  • Denissova, N.G., Pouponnot, C., Long, J., He, D., and Liu, F. 2000. Transforming growth factor beta-inducible independent binding of SMAD to the Smad7 promoter. Proc. Natl. Acad. Sci. USA 97:6397-6402.

    CAS  PubMed  Google Scholar 

  • Derynck, R., Zhang, Y., and Feng, X.H. 1998. Smads: transcriptional activators of TGF-beta re-sponses. Cell 95:737-740.

    CAS  PubMed  Google Scholar 

  • Dixon, I.M.C., Lee, S.L., and Dhalla, N.S. 1990. Nitrendipine binding in congestive heart failure due to myocardial infarction. Circ. Res. 66:782-788.

    CAS  PubMed  Google Scholar 

  • Dixon, I.M.C., Reid, N.L., and Ju, H. 1997. Angiotensin II and TGF-b in the development of cardiac fibrosis, myocyte hypertrophy, and heart failure. Heart Failure Rev. 2:107-116.

    CAS  Google Scholar 

  • Dixon, I.M.C., Ju, H., and Reid, N.L. 1998. The role of angiotensin II in post-translational regula-tion of fibrillar collagens in fibrosed and failing rat heart.471-498.

    Google Scholar 

  • Dixon, I.M.C., Hao, J., Reid, N.L., and Roth, M. 2000. Effect of chronic AT1 receptor blockade on cardiac smad overexpression in hereditary cardiomyopathic hamsters. Cardiovasc. Res. 46:286-297.

    CAS  PubMed  Google Scholar 

  • Dugina, V., Fontao, L., Chaponnier, C., Vasiliev, J., and Gabbiani, G. 2001. Focal adhesion features during myofibroblastic differentiation are controlled by intracellular and extracellular factors. J. Cell Sci. 114:3285-3296.

    CAS  PubMed  Google Scholar 

  • Eghbali, M., Czaja, M.J., Zeydel, M., Weiner, F.R., Zern, M.A., Seifter, S., and Blumenfeld, O.O. 1988. Collagen chain mRNAs in isolated heart cells from young and adult rats. J. Mol. Cell. Cardiol. 20:267-276.

    CAS  PubMed  Google Scholar 

  • Evans, R.A., Tian, Y.C., Steadman, R., and Phillips, A.O. 2003. TGF-beta1-mediated fibroblast-myofibroblast terminal differentiation—the role of smad proteins. Exp. Cell Res. 282:90-100.

    CAS  PubMed  Google Scholar 

  • Fishbein, M.C., Maclean, D., and Maroko, P.R. 1978. Experimental myocardial infarction in the rat: qualitative and quantitative changes during pathologic evolution. Am. J. Pathol. 90:57-70.

    CAS  PubMed  Google Scholar 

  • Frangogiannis, N.G., Smith, C.W., and Entman, M.L. 2002. The inflammatory response in my-ocardial infarction. Cardiovasc. Res. 53:31-47.

    CAS  PubMed  Google Scholar 

  • Freed, D.H., Cunnington, R.H., Dangerfield, A.L., Sutton, J.S., and Dixon, I.M. 2005. Emerging evidence for the role of cardiotrophin-1 in cardiac repair in the infarcted heart. Cardiovasc. Res. 65:782-792.

    CAS  PubMed  Google Scholar 

  • Galvin, K.M., Donovan, M.J., Lynch, C.A., Meyer, R.I., Paul, R.J., Lorenz, J.N., Fairchild-Huntress, V., Dixon, K.L., Dunmore, J.H., Gimbrone, M.A., Falb, D., and Huszar, D. 2000. A role for smad6 in development and homeostasis of the cardiovascular system. Nat. Genet. 24:171-174.

    CAS  PubMed  Google Scholar 

  • Hao, J., Ju, H., Zhao, S., Junaid, A., Scammell-LaFleur, T., and Dixon, I.M. 1999. Elevation of expression of Smads 2, 3, and 4, decorin and TGF-beta in the chronic phase of myocardial infarct scar healing. J. Mol. Cell. Cardiol. 31:667-678.

    CAS  PubMed  Google Scholar 

  • Hao, J., Wang, B., Jones, S.C., Jassal, D.S., and Dixon, I.M.C. 2000. Interaction between an-giotensin II and Smad proteins in fibroblasts in failing heart and in vitro. Am. J. Physiol. 279:H3020-H3030.

    CAS  Google Scholar 

  • Hayashi, H., Abdollah, S., Qiu, Y., Cai, J., Xu, Y.Y., Grinnell, B.W., Richardson, M.A., Topper, J.N., Gimbrone, M.A., Jr., Wrana, J.L., and Falb, D. 1997. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 89:1165-1173.

    CAS  PubMed  Google Scholar 

  • Heldin, C.H., Miyazono, K., and ten Dijke, P. 1997. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465-471.

    CAS  PubMed  Google Scholar 

  • Hildebrand, A., Romaris, M., Rasmussen, L.M., Heinegard, D., Twardzik, D.R., Border, W.A., and Ruoslahti, E. 1994. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem. J. 302:527-534.

    CAS  PubMed  Google Scholar 

  • Holmes, J.W., Nunez, J.A., and Covell, J.W. 1997. Functional implications of myocardial scar structure. Am. J. Physiol. 272:H2123-H2130.

    CAS  PubMed  Google Scholar 

  • Hunter, J.J., and Chien, K.R. 1999. Signaling pathways for cardiac hypertrophy and failure. N. Engl. J. Med. 341:1276-1283.

    CAS  PubMed  Google Scholar 

  • Ignotz, R.A., and Massague, J. 1986. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J. Biol. Chem. 261:4337-4345.

    CAS  PubMed  Google Scholar 

  • Imamura, T., Takase, M., Nishihara, A., Oeda, E., Hanai, J., Kawabata, M., and Miyazono, K. 1997. Smad6 inhibits signalling by the TGF-beta superfamily. Nature 389:622-626.

    CAS  PubMed  Google Scholar 

  • Inagaki, Y., Truter, S., and Ramirez, F. 1994. Transforming growth factor-beta stimulates alpha 2(I) collagen gene expression through a cis-acting element that contains an Sp1-binding site. J. Biol. Chem. 269:14828-14834.

    CAS  PubMed  Google Scholar 

  • Ishida, W., Hamamoto, T., Kusanagi, K., Yagi, K., Kawabata, M., Takehara, K., Sampath, T.K., Kato, M., and Miyazono, K. 2000. Smad6 is a Smad1/5-induced smad inhibitor. Characteriza-tion of bone morphogenetic protein-responsive element in the mouse Smad6 promoter. J. Biol. Chem. 275:6075-6079.

    CAS  PubMed  Google Scholar 

  • Itoh, S., Landstrom, M., Hermansson, A., Itoh, F., Heldin, C.H., Heldin, N.E., and ten Dijke, P. 1998. Transforming growth factor beta1 induces nuclear export of inhibitory Smad7. J. Biol. Chem. 273:29195-29201.

    CAS  PubMed  Google Scholar 

  • Jalil, J.E., Doering, C.W., Janicki, J.S., Pick, R., Shroff, S.G., and Weber, K.T. 1989. Fibrillar col-lagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ. Res. 64:1041-1050.

    CAS  PubMed  Google Scholar 

  • Ju, H., Zhao, S., Davinder, S.J., and Dixon, I.M. 1997. Effect of AT1 receptor blockade on cardiac collagen remodeling after myocardial infarction. Cardiovasc. Res. 35:223-232.

    CAS  PubMed  Google Scholar 

  • Ju, H., Zhao, S., Tappia, P.S., Panagia, V., and Dixon, I.M.C. 1998. Expression of Gqalpha and PLC-beta in scar and border tissue in heart failure due to myocardial infarction. Circulation 97:892-899.

    CAS  PubMed  Google Scholar 

  • Jugdutt, B.I., and Amy, R.W. 1986. Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. J. Am. Coll. Cardiol. 7:91-102.

    CAS  PubMed  Google Scholar 

  • Kannel, W.B. 1997. Epidemiology of Heart Failure in the United States 279-288.

    Google Scholar 

  • Kavsak, P., Rasmussen, R.K., Causing, C.G., Bonni, S., Zhu, H., Thomsen, G.H., and Wrana, J.L. 2000. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol. Cell. 6:1365-1375.

    CAS  PubMed  Google Scholar 

  • Kim, B.C., Lee, H.J., Park, S.H., Lee, S.R., Karpova, T.S., McNally, J.G., Felici, A., Lee, D.K., and Kim, S.J. 2004. Jab1/CSN5, a component of the COP9 signalosome, regulates transforming growth factor beta signaling by binding to Smad7 and promoting its degradation. Mol. Cell. Biol. 24:2251-2262.

    CAS  PubMed  Google Scholar 

  • Kingsley, D.M. 1994. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 8:133-146.

    CAS  PubMed  Google Scholar 

  • Kokura, K., Kaul, S.C., Wadhwa, R., Nomura, T., Khan, M.M., Shinagawa, T., Yasukawa, T., Colmenares, C., and Ishii, S. 2001. The Ski protein family is required for MeCP2-mediated transcriptional repression. J. Biol. Chem. 276:34115-34121.

    CAS  PubMed  Google Scholar 

  • Kokura, K., Kim, H., Shinagawa, T., Khan, M.M., Nomura, T., and Ishii, S. 2003. The Ski-binding protein C184M negatively regulates tumor growth factor-beta signaling by sequestering the Smad proteins in the cytoplasm. J. Biol. Chem. 278:20133-20139.

    CAS  PubMed  Google Scholar 

  • Lagna, G., Hata, A., Hemmati-Brivanlou, A., and Massague, J. 1996. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature 383:832-836.

    CAS  PubMed  Google Scholar 

  • Li, Y., Turck, C.M., Teumer, J.K., and Stavnezer, E. 1986. Unique sequence, ski, in Sloan-Kettering avian retroviruses with properties of a new cell-derived oncogene. J. Virol. 57:1065-1072.

    CAS  PubMed  Google Scholar 

  • Liu, K.-Z., Jackson, M., Sowa, M., Ju, H., Dixon, I.M.C., and Mantsch, H.H. 1996. Modification of the extracellular matrix following myocardial infarction monitored by FTIR spectroscopy. Biochim. Biophys. Acta 1315:73-77.

    Google Scholar 

  • Ludolph, D.C., Neff, A.W., Parker, M.A., Mescher, A.L., Smith, R.C., and Malacinski, G.M. 1995. Cloning and expression of the axolotl proto-oncogene ski. Biochim. Biophys. Acta 1260:102-104.

    PubMed  Google Scholar 

  • Luo, K. 2004. Ski and SnoN: negative regulators of TGF-beta signaling. Curr. Opin. Genet. Dev. 14:65-70.

    CAS  PubMed  Google Scholar 

  • Luo, K., Stroschein, S.L., Wang, W., Chen, D., Martens, E., Zhou, S., and Zhou, Q. 1999. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev. 13:2196-2206.

    CAS  PubMed  Google Scholar 

  • Macdonald, M., Wan, Y., Wang, W., Roberts, E., Cheung, T.H., Erickson, R., Knuesel, M.T., and Liu, X. 2004. Control of cell cycle-dependent degradation of c-Ski proto-oncoprotein by Cdc34. Oncogene 23:5643-5653.

    CAS  PubMed  Google Scholar 

  • Macias-Silva, M., Abdollah, S., Hoodless, P.A., Pirone, R., Attisano, L., and Wrana, J.L. 1996. MADR2 is a substrate of the TGFbeta receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 87:1215-1224.

    CAS  PubMed  Google Scholar 

  • MacLellan, W.R., and Schneider, M.D. 2000. Genetic dissection of cardiac growth control path-ways. Annu. Rev. Physiol. 62:289-319.

    CAS  PubMed  Google Scholar 

  • Makino, N., Hata, T., Sugano, M., Dixon, I.M.C., and Yanaga, T. 1996. Regression of hypertrophy after myocardial infarction is produced by the chronic blockade of angiotensin type 1 receptor in rats. J. Mol. Cell. Cardiol. 28:507-517.

    CAS  PubMed  Google Scholar 

  • Marcelain, K., and Hayman, M.J. 2005. The Ski oncoprotein is upregulated and localized at the centrosomes and mitotic spindle during mitosis. Oncogene 24:4321-4329.

    CAS  PubMed  Google Scholar 

  • Massague, J. 1998. TGF-beta signal transduction. Annu. Rev. Biochem. 67:753-791.

    CAS  PubMed  Google Scholar 

  • Massague, J., and Wotton, D. 2000. Transcriptional control by the TGF-beta/Smad signaling sys-tem. EMBO J.19:1745-1754.

    Google Scholar 

  • Massague, J., Hata, A., and Liu, F. 1997. Tgf-beta signalling through the Smad pathway. Trends Cell Biol. 7:187-192.

    CAS  Google Scholar 

  • Masur, S.K., Dewal, H.S., Dinh, T.T., Erenburg, I., and Petridou, S. 1996. Myofibroblasts differen-tiate from fibroblasts when plated at low density. Proc. Natl. Acad. Sci. USA 93:4219-4223.

    CAS  PubMed  Google Scholar 

  • Medrano, E.E. 2003. Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis. Oncogene 22:3123-3129.

    CAS  PubMed  Google Scholar 

  • Mettauer, B., Zoll, J., Garnier, A., and Ventura-Clapier, R. 2006. Heart failure: a model of cardiac and skeletal muscle energetic failure. Pflugers Arch. 452:653-666.

    CAS  PubMed  Google Scholar 

  • Murakami, G., Watabe, T., Takaoka, K., Miyazono, K., and Imamura, T. 2003. Cooperative inhibi-tion of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads. Mol. Biol. Cell. 14:2809-2817.

    CAS  PubMed  Google Scholar 

  • Nagarajan, R.P., Zhang, J., Li, W., and Chen, Y. 1999. Regulation of Smad7 promoter by direct association with Smad3 and Smad4. J. Biol. Chem. 274:33412-33418.

    CAS  PubMed  Google Scholar 

  • Nakajima, H., Nakajima, H.O., Salcher, O., Dittie, A.S., Dembowsky, K., Jing, S., and Field, L.J. 2000. Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor-beta(1) transgene in the heart. Circ. Res.86:571-579.

    Google Scholar 

  • Nakao, A., Afrakhte, M., Moren, A., Nakayama, T., Christian, J.L., Heuchel, R., Itoh, S., Kawabata, M., Heldin, N.E., Heldin, C.H., and ten Dijke, P. 1997a. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 389:631-635.

    CAS  PubMed  Google Scholar 

  • Nakao, A., Roijer, E., Imamura, T., Souchelnytskyi, S., Stenman, G., Heldin, C.H., and ten Dijke, P. 1997b. Identification of Smad2, a human Mad-related protein in the transforming growth factor beta signaling pathway. J. Biol. Chem. 272:2896-2900.

    CAS  PubMed  Google Scholar 

  • Nian, M., Lee, P., Khaper, N., and Liu, P. 2004. Inflammatory cytokines and postmyocardial in-farction remodeling. Circ. Res. 94:1543-1553.

    CAS  PubMed  Google Scholar 

  • Nishihara, A., Hanai, J.I., Okamoto, N., Yanagisawa, J., Kato, S., Miyazono, K., and Kawabata, M. 1998. Role of p300, a transcriptional coactivator, in signalling of TGF-beta. Genes Cells 3:613-623.

    CAS  PubMed  Google Scholar 

  • Nomura, N., Sasamoto, S., Ishii, S., Date, T., Matsui, M., and Ishizaki, R. 1989. Isolation of human cDNA clones of ski and the ski-related gene, sno. Nucleic Acids Res. 17:5489-5500.

    CAS  PubMed  Google Scholar 

  • Nomura, T., Khan, M.M., Kaul, S.C., Dong, H.D., Wadhwa, R., Colmenares, C., Kohno, I., and Ishii, S. 1999. Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. Genes Dev. 13:412-423.

    CAS  PubMed  Google Scholar 

  • Ohta, K., Kim, S., Hamaguchi, A., Yukimura, T., Miura, K., Takaori, K., and Iwao, H. 1994. Role of angiotensin II in extracellular matrix and transforming growth factor-beta 1 expression in hypertensive rats. Eur. J. Pharmacol. 269:115-119.

    CAS  PubMed  Google Scholar 

  • Park, S.H. 2005. Fine tuning and cross-talking of TGF-beta signal by inhibitory Smads. J. Biochem. Mol. Biol. 38:9-16.

    PubMed  Google Scholar 

  • Pelouch, V., Dixon, I.M., Golfman, L., Beamish, R.E., and Dhalla, N.S. 1993. Role of extracellular matrix proteins in heart function. Mol. Cell. Biochem. 129:101-120.

    CAS  PubMed  Google Scholar 

  • Peterson, D.J., Ju, H., Hao, J., Panagia, M., Chapman, D.C., and Dixon, I.M.C. 1999. Expression of Gi-2 alpha and Gs alpha in myofibroblasts localized to the infarct scar in heart failure due to myocardial infarction. Cardiovasc. Res. 41:575-585.

    CAS  PubMed  Google Scholar 

  • Pfeffer, J.M., Pfeffer, M.A., Fletcher, P.J., and Braunwald, E. 1991. Progressive ventricular remod-eling in rat with myocardial infarction. Am. J. Physiol. 260:H1406-H1414.

    Google Scholar 

  • Pfeffer, J.M., Fischer, T.A., and Pfeffer, M.A. 1995. Angiotensin-converting enzyme inhibition and ventricular remodeling after myocardial infarction. Annu. Rev. Physiol. 57:805-826.

    Google Scholar 

  • Powell, D.W., Mifflin, R.C., Valentich, J.D., Crowe, S.E., Saada, J.I., and West, A.B. 1999. Myofi-broblasts. I. Paracrine cells important in health and disease. Am. J. Physiol. 277:C1-C9.

    CAS  Google Scholar 

  • Reed, J.A., Bales, E., Xu, W., Okan, N.A., Bandyopadhyay, D., and Medrano, E.E. 2001. Cytoplas-mic localization of the oncogenic protein Ski in human cutaneous melanomas in vivo: functional implications for transforming growth factor beta signaling. Cancer Res. 61:8074-8078.

    CAS  PubMed  Google Scholar 

  • Reguly, T., and Wrana, J.L. 2003. In or out? The dynamics of Smad nucleocytoplasmic shuttling. Trends Cell Biol. 13:216-220.

    CAS  PubMed  Google Scholar 

  • Roberts, A.B., Heine, U.I., Flanders, K.C., and Sporn, M.B. 1990. Transforming growth factor-beta. Major role in regulation of extracellular matrix. Ann. N.Y. Acad. Sci. 580:225-232.

    CAS  PubMed  Google Scholar 

  • Robinson, T.F., Cohen-Gould, L., and Factor, S.M. 1983. Skeletal framework of mammalian heart muscle. Arrangement of inter- and pericellular connective tissue structures. Lab. Invest. 49:482-498.

    CAS  PubMed  Google Scholar 

  • Robinson, T.F., Factor, S.M., and Sonnenblick, E.H. 1986. The heart as a suction pump. Sci. Am. 254:84-91.

    Article  CAS  PubMed  Google Scholar 

  • Sadoshima, J., and Izumo, S. 1993. Molecular characterization of angiotensin II-induced hypertro-phy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ. Res. 73:413-423.

    CAS  PubMed  Google Scholar 

  • Saha, M., and Ferro, A. 2006. Cardiac stem cell therapy: present and future. Br. J. Clin. Pharmacol. 61:727-729.

    PubMed  Google Scholar 

  • Serini, G., and Gabbiani, G. 1999. Mechanisms of myofibroblast activity and phenotypic modula-tion. Exp. Cell Res. 250:273-283.

    CAS  PubMed  Google Scholar 

  • Shi, B., Heavner, J.E., McMahon, K.K., and Spallholz, J.E. 1995. Dynamic changes in G alpha i-2 levels in rat hearts associated with impaired heart function after myocardial infarction. Am. J. Physiol. 269:H1073-H1079.

    CAS  PubMed  Google Scholar 

  • Simon-Assmann, P., Kedinger, M., De Arcangelis, A., Rousseau, V., and Simo, P. 1995. Extracel-lular matrix components in intestinal development. Experientia 51:883-900.

    Google Scholar 

  • Sleeman, J.P., and Laskey, R.A. 1993. Xenopus c-ski contains a novel coiled-coil protein domain, and is maternally expressed during development. Oncogene 8:67-77.

    Google Scholar 

  • Stroschein, S.L., Wang, W., Zhou, S., Zhou, Q., and Luo, K. 1999. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science 286:771-774.

    CAS  PubMed  Google Scholar 

  • Sun, Y. 1997. Local angiotensin II and myocardial fibrosis. In Hypertension and the Heart, A. Zanchetti (ed.). Plenum Press, New York, 55-61.

    Google Scholar 

  • Sun, Y., and Weber, K.T. 1994. Angiotensin II receptor binding following myocardial infarction in the rat. Cardiovasc. Res. 28:1623-1628.

    CAS  PubMed  Google Scholar 

  • Sun, Y., and Weber, K.T. 1996. Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J. Mol. Cell. Cardiol. 28:851-858.

    CAS  PubMed  Google Scholar 

  • Sun, Y., and Weber, K.T. 2000. Infarct scar: a dynamic tissue. Cardiovasc. Res. 46:250-256.

    CAS  PubMed  Google Scholar 

  • Sun, Y., Cleutjens, J.P., Diaz-Arias, A.A., and Weber, K.T. 1994. Cardiac angiotensin converting enzyme and myocardial fibrosis in the heart. Cardiovasc. Res. 28:1423-1432

    CAS  PubMed  Google Scholar 

  • Sutrave, P., Kelly, A.M., and Hughes, S.H. 1990. ski can cause selective growth of skeletal muscle in transgenic mice. Genes Dev. 4:1462-1472.

    Google Scholar 

  • Suzuki, H., Yagi, K., Kondo, M., Kato, M., Miyazono, K., and Miyazawa, K. 2004. c-Ski inhibits the TGF-beta signaling pathway through stabilization of inactive Smad complexes on Smad-binding elements. Oncogene 23:5068-5076.

    Google Scholar 

  • Tarapore, P., Richmond, C., Zheng, G., Cohen, S.B., Kelder, B., Kopchick, J., Kruse, U., Sippel, A.E., Colmenares, C., and Stavnezer, E. 1997. DNA binding and transcriptional activation by the Ski oncoprotein mediated by interaction with NFI. Nucleic Acids Res. 25:3895-3903.

    CAS  PubMed  Google Scholar 

  • Thibault, G., Arguin, C., and Garcia, R. 1995. Cardiac endothelin-1 content and receptor subtype in spontaneously hypertensive rats. J. Mol. Cell. Cardiol. 27:2327-2336.

    CAS  PubMed  Google Scholar 

  • Thiedemann, K.U., Holubarsch, C., Medugorac, I., and Jacob, R. 1983. Connective tissue content and myocardial stiffness in pressure overload hypertrophy. A combined study of morphologic, morphometric, biochemical, and mechanical parameters. Basic Res. Cardiol. 78:140-155.

    CAS  Google Scholar 

  • Tokitou, F., Nomura, T., Khan, M.M., Kaul, S.C., Wadhwa, R., Yasukawa, T., Kohno, I., and Ishii, S. 1999. Viral ski inhibits retinoblastoma protein (Rb)-mediated transcriptional repression in a dominant negative fashion. J. Biol. Chem. 274:4485-4488.

    CAS  PubMed  Google Scholar 

  • Tomasek, J.J., Gabbiani, G., Hinz, B., Chaponnier, C., and Brown, R.A. 2002. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3:349-363.

    CAS  PubMed  Google Scholar 

  • Tsukazaki, T., Chiang, T.A., Davison, A.F., Attisano, L., and Wrana, J.L. 1998. SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95:779-791.

    CAS  PubMed  Google Scholar 

  • Ueki, N., and Hayman, M.J. 2003. Direct interaction of Ski with either Smad3 or Smad4 is nec-essary and sufficient for Ski-mediated repression of transforming growth factor-beta signaling. J. Biol. Chem. 278:32489-32492.

    CAS  PubMed  Google Scholar 

  • van Krimpen, C., Schoemaker, R.G., Cleutjens, J.P., Smits, J.F., Struyker-Boudier, H.A., Bosman, F.T., and Daemen, M.J. 1991. Angiotensin I converting enzyme inhibitors and cardiac remodeling. Basic Res. Cardiol. 86 (Suppl. 1):149-155.

    Google Scholar 

  • Villarreal, F.J., Lee, A.A., Dillmann, W.H., and Giordano, F.J. 1996. Adenovirus-mediated over-expression of human transforming growth factor-beta 1 in rat cardiac fibroblasts, myocytes and smooth muscle cells. J. Mol. Cell. Cardiol. 28:735-742.

    CAS  PubMed  Google Scholar 

  • Vindevoghel, L., Kon, A., Lechleider, R.J., Uitto, J., Roberts, A.B., and Mauviel, A. 1998a. Smad-dependent transcriptional activation of human type VII collagen gene (COL7A1) promoter by transforming growth factor-beta. J. Biol. Chem. 273:13053-13057.

    CAS  PubMed  Google Scholar 

  • Vindevoghel, L., Lechleider, R.J., Kon, A., de Caestecker, M.P., Uitto, J., Roberts, A.B., and Mauviel, A. 1998b. SMAD3/4-dependent transcriptional activation of the human type VII col-lagen gene (COL7A1) promoter by transforming growth factor beta. Proc. Natl. Acad. Sci. USA 95:14769-14774.

    CAS  PubMed  Google Scholar 

  • Vogel, G. 1999. A new blocker for the TGF-beta pathway. Science 286:665.

    CAS  PubMed  Google Scholar 

  • Wang, B., Hao, J., Jones, S.C., Yee, M.S., Roth, J.C., and Dixon, I.M. 2002. Decreased Smad 7 expression contributes to cardiac fibrosis in the infarcted rat heart. Am. J. Physiol. Heart Circ. Physiol. 282:H1685-H1696.

    CAS  PubMed  Google Scholar 

  • Watkins, S.J., Jonker, L., and Arthur, H.M. 2006. A direct interaction between TGFbeta activated kinase 1 and the TGFbeta type II receptor: implications for TGFbeta signalling and cardiac hypertrophy. Cardiovasc. Res. 69:432-439.

    CAS  PubMed  Google Scholar 

  • Weber, K.T. 1997a. Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation 96:4065-4082.

    CAS  PubMed  Google Scholar 

  • Weber, K.T. 1997b. Fibrosis, a common pathway to organ failure: angiotensin II and tissue repair. Semin. Nephrol. 17:467-491.

    CAS  PubMed  Google Scholar 

  • Weber, K.T., and Brilla, C.G. 1991. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83:1849-1865.

    CAS  PubMed  Google Scholar 

  • Weber, K.T., Jalil, J.E., Janicki, J.S., and Pick, R. 1989. Myocardial collagen remodeling in pres-sure overload hypertrophy. A case for interstitial heart disease. Am. J. Hypertens. 2:931-940.

    CAS  PubMed  Google Scholar 

  • Whitman, M. 1997. Signal transduction. Feedback from inhibitory SMADs. Nature 389:549-551.

    CAS  PubMed  Google Scholar 

  • Willems, I.E., Havenith, M.G., De Mey, J.G., and Daemen, M.J. 1994. The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am. J. Pathol. 145:868-875.

    CAS  PubMed  Google Scholar 

  • Wollert, K.C., and Drexler, H. 2005. Clinical applications of stem cells for the heart. Circ. Res. 96:151-163.

    CAS  PubMed  Google Scholar 

  • Wrana, J.L. 2000. Regulation of Smad activity. Cell 100:189-192.

    CAS  PubMed  Google Scholar 

  • Wrana, J., and Pawson, T. 1997. Signal transduction. Mad about SMADs. Nature 388:28-29.

    CAS  PubMed  Google Scholar 

  • Wu, J.W., Krawitz, A.R., Chai, J., Li, W., Zhang, F., Luo, K., and Shi, Y. 2002. Structural mecha-nism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling. Cell 111:357-367.

    CAS  PubMed  Google Scholar 

  • Xu, W., Angelis, K., Danielpour, D., Haddad, M.M., Bischof, O., Campisi, J., Stavnezer, E., and Medrano, E.E. 2000. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor. Proc. Natl. Acad. Sci. USA 97:5924-5929.

    CAS  PubMed  Google Scholar 

  • Zawel, L., Dai, J.L., Buckhaults, P., Zhou, S., Kinzler, K.W., Vogelstein, B., and Kern, S.E. 1998. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol. Cell 1:611-617.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Feng, X., We, R., and Derynck, R. 1996. Receptor-associated Mad homologues syner-gize as effectors of the TGF-beta response. Nature 383:168-172.

    CAS  PubMed  Google Scholar 

  • Zhou, S., Zawel, L., Lengauer, C., Kinzler, K.W., and Vogelstein, B. 1998. Characterization of human FAST-1, a TGF beta and activin signal transducer. Mol. Cell 2:121-127.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dixon, I.M.C., Wang, B., Bedosky, K.M., Cunnington, R.H., Rattan, S.G., Almaqrhi, A. (2008). Regulatory Role of TGF-β in Cardiac Myofibroblast Function and Post-MI Cardiac Fibrosis: Key Roles of Smad7 and c-Ski. In: Srivastava, A.K., Anand-Srivastava, M.B. (eds) Signal Transduction in the Cardiovascular System in Health and Disease. Advances in Biochemistry in Health and Disease, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09552-3_13

Download citation

Publish with us

Policies and ethics