Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((volume 635))

Abstract

Mucosal surfaces are colonized by a complex microbiota that provides beneficial functions under normal physiological conditions, but is capable of contributing to chronic inflammatory disease in susceptible individuals. Of the mucosal tissues, the mammalian intestine harbors an especially high number of microbes with a remarkable diversity. Inflammatory bowel disease (IBD) is a group of chronic relapsing inflammatory disorders of the intestinal mucosa. Evidence from human studies and animal models provides compelling support that intestinal microbes play a key role in disease pathogenesis. While the existence a specific causative pathogen is possible, it appears more likely that intestinal microbes normally present as commensal microbiota may trigger inflammation and perpetuate disease in genetically susceptible individuals. There may be also a shift in the makeup of the commensal flora to a nonphysiologic composition that is more prone to disease (termed dysbiosis). Evidence supports that genetic susceptibility stems from one or more defects in mucosal immune functions, including microbe recognition, barrier function, intercellular communication and antimicrobial effector mechanisms. It is quite plausible to imagine that the chronic inflammation of IBD may in some cases be a normal immune response to an abnormal adherent invasive microbiota and in other cases an over exuberant immune response to an otherwise normal commensal microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hooper LV, Gordon JI. Commensal Host-Bacterial Relationships in the Gut Science 2001; 292:1115–1118.

    CAS  Google Scholar 

  2. Midvedt T. Microbial functional activities. In: Hanson LA, Yolken RH, eds. Probiotics, Other Nutritional Factors and Intestinal Microflora. Philadelphia: Lippincott-Raven, 1999:79–96.

    Google Scholar 

  3. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004; 118:229–241.

    Article  PubMed  CAS  Google Scholar 

  4. Sobel JD. Bacterial vaginosis. Annual Review of Medicine 2000; 51:349–356.

    Article  PubMed  CAS  Google Scholar 

  5. Swidsinski A, Mendling W, Loening-Baucke V et al. Adherent biofilms in bacterial vaginosis. Obstet Gynecol 2005; 106(5 Pt 1):1013–1023.

    PubMed  Google Scholar 

  6. Valore EV, Wiley DJ, Ganz T. Reversible deficiency of antimicrobial polypeptides in bacterial vaginosis. Infect Immun 2006; 74(10):5693–5702.

    Article  PubMed  CAS  Google Scholar 

  7. Marchini G, Nelson A, Edner J et al. Erythema toxicum neonatorus is an innate immune response to commensal microbes penetrated into the skin of the newborn infant. Pediatr Res 2005; 58(3):613–616.

    Article  PubMed  Google Scholar 

  8. Salzman NH, Polin RA, Harris MC et al. Enteric defensin expressionin necrotizing enterocolitis. Pediatric Research 1998; 44(1):20–26.

    Article  PubMed  CAS  Google Scholar 

  9. Neu J, Chen M, Beierle E. Intestinal innate immunity: how does it relate to the pathogenesis of necrotizing enterocolitis. Semin Pediatr Surg 2005; 14(3):137–144.

    Article  PubMed  Google Scholar 

  10. Schwiertz A, Gruhl B, Lobnitz M et al. Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breast-fed, full-term infants. Pediatr Res 2003; 54(3):393–399.

    Article  PubMed  Google Scholar 

  11. Di A, Brown ME, Deriy LV et al. CFTR regulates phagosome acidification in macrophages and alters bactericidal activity. Nat Cell Biol 2006; 8(9):933–944.

    Article  PubMed  CAS  Google Scholar 

  12. Rogers GB, Carroll MP, Serisier DJ et al. Use of 16S rRNA gene profiling by terminal restriction fragment length polymorphism analysis to compare bacterial communities in sputum and mouthwash samples from patients with cystic fibrosis. J Clin Microbiol 2006; 44(7):2601–2604.

    Article  PubMed  CAS  Google Scholar 

  13. Clarke LL, Gawenis LR, Bradford EM et al. Abnormal Paneth cell granule dissolution and compromised resistance to bacterial colonization in the intestine of CF mice. Am J Physiol—Gastrointestinal and Liver Physiology 2004; 286(6):G1050–1058.

    Article  CAS  Google Scholar 

  14. Goldman MJ, Anderson GM, Stolzenberg ED et al. Human Beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 1997; 88:553–560.

    Article  PubMed  CAS  Google Scholar 

  15. McClean P, Dodge JA, Nunn S et al. Surface features of small-intestinal mucosa in childhood diaarheal disorders. J Pediatr Gastroenterol Nutr 1996; 23(5):538–546.

    Article  PubMed  CAS  Google Scholar 

  16. Tjellstrom B, Stenhammar L, Hogberg L et al. Gut microflora associated characteristics in children with celiac disease. Am J Gastroenterol 2005; 100(12):2784–2788.

    Article  PubMed  CAS  Google Scholar 

  17. MacDonald TT, Monteleone G. Immunity, inflammation and allergy in the gut. Science 2005; 307(5717):1920–1925.

    Article  PubMed  CAS  Google Scholar 

  18. Sartor RB. Intestinal microflora in human and experimental inflammatory bowel disease. Curr opin Gastroenterol 2001; 17:324–330.

    Article  PubMed  CAS  Google Scholar 

  19. Podolsky DK. Inflammatory bowel disease. N Engl J Med 2002; 347:417–429.

    Article  PubMed  CAS  Google Scholar 

  20. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 2003; 3(7):521–533.

    Article  PubMed  CAS  Google Scholar 

  21. Fiocchi C. Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 1998; 115(1):182–205.

    Article  PubMed  CAS  Google Scholar 

  22. Korzenik JR, Podolsky DK. Evolving knowledge and therapy of inflammatory bowel disease. Nat Rev Drug Discov 2006; 5(3):197–209.

    Article  PubMed  CAS  Google Scholar 

  23. Shen B, Lashner BA. Pouchitis: a spectrum of diseases. Curr Gastroenterol Rep 2005; 7(5):404–411.

    Article  PubMed  Google Scholar 

  24. Petras RE. Nonneoplastic intestinal diseases. In: Mills SE, ed. Sternberg’s Diagnostic Surgical Pathology, 4th edition, New York: Lippincott, Williams and Wilkins; 2004:1475–1541.

    Google Scholar 

  25. Kuhn R, Lohler J, Rennick D et al. Interleukin-10-defincient mice develop chronic enterocolitis. Cell 1993; 75:263–274.

    Article  PubMed  CAS  Google Scholar 

  26. Sadlack B, Merz H, Schorle H et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 1993; 75:253–261.

    Article  PubMed  CAS  Google Scholar 

  27. Dianda L, Hanby AM, Wright NA et al. T-cell receptor-alpha beta-deficient mice fail to develop colitis in the absense of a microbial environment. Am J Pathol 1997; 150(1):91–97.

    PubMed  CAS  Google Scholar 

  28. Mombaerts P, Mizoguchi E, Grusby MJ et al. Spontaneous development of infalmmatory bowel disease in T-cell receptor mutant mice. Cell 1993; 75(2):274–282.

    Article  PubMed  CAS  Google Scholar 

  29. Rath HC, Herfarth HH, Ikeda JS et al. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest 1996; 98(4):945–953.

    Article  PubMed  CAS  Google Scholar 

  30. Aranda R, Sydora BC, McAllister PL et al. Analysis of intestinal lymphocytes inmouse colitis mediated by transfer of CD4+, CD45RB high T-cells to, SCID recipients. J Immunol 1997; 158(7):3464–3473.

    PubMed  CAS  Google Scholar 

  31. Janowitz HD, Croen EC, Sachar DB. The role of the fecal strem in Crohn’s disease: an historical and analytic review. Inflamm Bowel Dis 1998; 4(1):29–39.

    PubMed  CAS  Google Scholar 

  32. Harper PH, Truelove SC, Lee EC, et al. Split ileostomy and ileocolostomy for Crohn’s disease of the colon and ulcerative colitis: a 20 year survey. Gut 1983; 24(2):106–113.

    Article  PubMed  CAS  Google Scholar 

  33. Rutgeerts P, Goboes K, Peeters M et al. Effect of faccal stream diversion on recurrence of Crohn’s disease in the neoterminal ileum. Lancet 1991; 338(8770):771–774.

    Article  PubMed  CAS  Google Scholar 

  34. Prantera C, Zannoni F, Scribano ML et al. An antibiotic regimen for the treatment of active Crohn’s disease: a randomized, controlled clinical trial of metronidazole plus ciprofloxacin. Am J Gastroenterol 1996; 91(2):328–332.

    PubMed  CAS  Google Scholar 

  35. Rutgeerts P, Hiele M, Geboes K et al. Controlled trial of metronidazole treatment for prevention of Crohn’s recurrence after ileal resection. Gastroenterology 1995; 108(6):1617–1621.

    Article  PubMed  CAS  Google Scholar 

  36. Arnold Gl, Beaves MR, Pryjdun VO et al. Preliminary study of ciproflaxacin in active Crohn’s disease. Inflamm Bowel Dis 2002; 8(1):10–15.

    Article  PubMed  Google Scholar 

  37. Ursing B, Alm T, Barany F et al. A comparative study of metronidazole and sulfasalazine for active Crohn’s disease: the cooperative Crohn’s disease study in Sweden. II. Result. Gastroenterology 1982; 83(3):550–562.

    PubMed  CAS  Google Scholar 

  38. Colombel JF, Lemann M, Cassagnou M et al. A controlled trial comparing ciprofloxacin with mesalazine for the treatment of active Crohn’s disease. Groupe ďEtudes Thereapeutiques des Affections, Inflammatoires Digestives (GETAID). Am J Gastroenterol 1999; 94(3):674–678.

    Article  PubMed  CAS  Google Scholar 

  39. D’Haens GR, Geboes K, Petters M et al. Early lesions of recurrent Crohn’s disease caused by infusion of intestinal contents in excluded ileum. Gastroenterology 1998; 114(2):262–267.

    Article  CAS  Google Scholar 

  40. Neut C, Bulois P, Desreumaux, P et al. Changes in the bacterial flora of the neoterminal ileum after ileocolonic resection for Crohn’s disease. Am J Gastroenterol 2002; 97(4):939–946.

    Article  PubMed  Google Scholar 

  41. Duchmann R, May E, Heike M et al. T-cell specificity and cross reactivity towards enterobacteria, bateroides, bifidobacterium and antigens from resident intestinal flora in humans. Gut 1999; 44(6):812–818.

    Article  PubMed  CAS  Google Scholar 

  42. La Scola B, Fenollar F, Fournier PE et al. Description of Tropheryma whipplei gen nov, sp nov, the Whipple’s disease bacillus. Int J Syst Evol Microbiol 2001; 51(Pt 4):1471–1479.

    PubMed  Google Scholar 

  43. Chacon O, Bermudez LE, Barletta RG. Johne’s disease, inflammatory bowel disease and Mycobacterium paratuberculosis. Ann Rev Microbiol 2004; 58:329–363.

    Article  CAS  Google Scholar 

  44. Sechi LA, Scanu AM, Molicotti P et al. Detection and Isolation of Mycobacterium avium subspecies paratuberculosis from intestinal mucosal biopsies of patients with and without Crohn’s disease in Sardinia. Am J Gastroenterol 2005; 100(7):1529–1536.

    Article  PubMed  Google Scholar 

  45. Autschbach F, Eisold S, Hinz U et al. High prevalence of Mycobacterium avium subspecies paratuberculosis IS900 DNA in gut tissues from individuals with Crohn’s disease. Gut 2005; 54(7):944–949.

    Article  PubMed  CAS  Google Scholar 

  46. Naser SA, Ghobrial G, Romero C et al. Culture of Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn’s disease. Lancet 2004; 364(9439):1039–1044.

    Article  PubMed  Google Scholar 

  47. Naser SA, Schwartz D, Shafran I. Isolation of Mycobacterium avium subspecies paratuberculosis from breast milk of Crohn’s disease patients. Am J Gastroenterol 2000; 95:1094–1095.

    Article  PubMed  CAS  Google Scholar 

  48. Baksh FK, Finkelstein SD, Ariyanayagam-Baksh SM et al. Absence of Mycobacterium avium subsp. paratuberculosis in the microdissected granulomas of Crohn’s disease. Mod Pathol 2004; 17(10):1289–1294.

    Article  PubMed  Google Scholar 

  49. Ellingson JLE, Brees D, Miller JM et al. Absence of Mycobacterium avium subspecies paratuberculosis components from Crohn’s disease intestinal biopsy tissue. Clin Med Res 2003; 1(3):217–226.

    Article  PubMed  Google Scholar 

  50. Polymeros D, Bogdanos DP, Day R et al. Does cross-reactivity between mycobacterium avium paratuberculosis and human intestinal antigens characterize Crohn’s disease? Gastroenterology 2006; 131(1):85–96.

    Article  PubMed  CAS  Google Scholar 

  51. Darfeuille-Michaud A, Boudeau J, Bulois P et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 2004; 127(2):412–421.

    Article  PubMed  Google Scholar 

  52. Darfeuille-Michaud A, Neut C, Barnich N et al. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology 1998; 115(6):1405–1413.

    Article  PubMed  CAS  Google Scholar 

  53. Sokol H, Lepage P, Seksik P et al. Temperature gradient gel electrophoresis of fecal 16S rRNA reveals active Escherichia coli in the microbiota of patients with ulcerative colitis. J Clin Microbiol 2006; 44(9):3172–3177.

    Article  PubMed  CAS  Google Scholar 

  54. Simpson KW, Dogan B, Rishniw M et al. Adherent and invasive Escherichia coli is associated with granulomatous colitis in boxer dogs. Infect Immun 2006; 74(8):4778–4792.

    Article  PubMed  CAS  Google Scholar 

  55. Tamboli CP, Neut C, Desreumaux P et al. Dysbiosis in inflammatory bowel disease. Gut 2004; 53:1–4.

    Article  PubMed  CAS  Google Scholar 

  56. Seksik P, Rigottier-Gois L, Gramet G et al. Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. Gut 2003; 52:237–242.

    Article  PubMed  CAS  Google Scholar 

  57. Ott SJ, Musfeldt M, Wenderoth DF et al. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 2004; 53(5):685–693.

    Article  PubMed  CAS  Google Scholar 

  58. Prindiville T, Cantrell M, Wilson KH. Ribosomal DNA sequence analysis of mucosa-associated bacteria in Crohn’s disease. Inflamm Bowel Dis 2004; 10(6):824–833.

    Article  PubMed  Google Scholar 

  59. Swidsinski A, Weber J, Loening-Baucke V et al. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol 2005; 43(7):3380–3389.

    Article  PubMed  Google Scholar 

  60. Seksik P, Lepaga P, de la Cochetiere MF et al. Search for localized dysbiosis in Crohn’s disease ulcerations by temporal temperature gradient gel electrophoresis of 16S rRNA. J, Clin Microbiol 2005; 43(9):4654–4658.

    Article  CAS  Google Scholar 

  61. Gophna U, Sommerfeld K, Gophna S et al. Differences between tissue-associated intestinal microfloras of patients with Crohn’s disease and Ulcerative colitis. J Clin Microbiol 2006; 44(11):4136–4141.

    Article  PubMed  CAS  Google Scholar 

  62. Bibiloni R, Mangold M, Madsen KL et al. The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn’s disease and ulcerative colitis patients. Journal of Medical Microbiology 2006; 55(Pt 8):1141–1149.

    Article  PubMed  Google Scholar 

  63. Rath HC, Schultz M, Freitag R et al. Different subsets of enteric bacteria induce and perpetuate experimental colitis in rats and mice. Infect Immun 2001; 69(4):2277–2285.

    Article  PubMed  CAS  Google Scholar 

  64. Balish E, Warner T. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am J Pathol 2002; 160(6):2253–2257.

    PubMed  CAS  Google Scholar 

  65. Kim SC, Tonkonogy SL, Albright CA et al. Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria. Gastroenterology 2005; 128(4):891–906.

    Article  PubMed  CAS  Google Scholar 

  66. Burich A, Hershberg R, Waggie K et al. Helicobacter-induced inflammatory bowel disease in IL-10-and T-cell-deficient mice. Am J Physiol Gastrointest Liver Physiol 2001; 281(3):G764–778.

    PubMed  CAS  Google Scholar 

  67. Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol 2002; 20:495–549.

    Article  PubMed  CAS  Google Scholar 

  68. Porter EM, Bevins CL, Ghosh D et al. The multifaceted Paneth cell. Cell Mol Life Sci 2002; 59(1):156–170.

    Article  PubMed  CAS  Google Scholar 

  69. Kobayashi KS, Chamaillard M, Ogura Y et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005; 307(5710):731–734.

    Article  PubMed  CAS  Google Scholar 

  70. Salzman NH, Ghosh D, Huttner KM et al. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 2003; 422:522–526.

    Article  PubMed  CAS  Google Scholar 

  71. Wilson CL, Ouellette AJ, Satchell DP et al. Regulation of intestinal a-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 1999; 286:113–117.

    Article  PubMed  CAS  Google Scholar 

  72. Wehkamp J, Harder J, Weichenthal M et al. NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut 2004; 53(11):1658–1664.

    Article  PubMed  CAS  Google Scholar 

  73. Wehkamp J, Salzman NH, Porter E et al. Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci USA 2005; 102(50):18129–18134.

    Article  PubMed  CAS  Google Scholar 

  74. Fellermann K, Stange DE, Schaeffeler E et al. A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet 2006; 79(3):439–448.

    Article  PubMed  CAS  Google Scholar 

  75. Stoll M, Corneliussen B, Costello CM et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet 2004; 36(5):476–480.

    Article  PubMed  CAS  Google Scholar 

  76. Peltekova VD, Wintle RF, Rubin LA et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 2004; 36(5):471–475.

    Article  PubMed  CAS  Google Scholar 

  77. Russell RK, Drummond HE, Nimmo ER et al. Analysis of the influence of OCTN1/2 variants within the IBD5 locus on, disease susceptibility and growth indices in early onset inflammatory bowel, disease. Gut 2006; 55(8):1114–1123.

    Article  PubMed  CAS  Google Scholar 

  78. Noble CL, Nimmo ER, Drummond H et al. The contribution of OCTN1/2 variants within the IBD5 locus to disease susceptibility and severity in Crohn’s disease. Gastroenterology. 2005; 129(6):1854–1864.

    Article  PubMed  CAS  Google Scholar 

  79. Potocnik U, Ferkolj I, Glavac D et al. Polymorphisms in multidrug resistance 1 (MDR1) gene are associated with refractory Crohn disease and ulcerative colitis. Genes Immun 2004; 5(7):530–539.

    Article  PubMed  CAS  Google Scholar 

  80. Katz KD, Hollander D, Vadheim CM et al. Intestinal permeability in patients with Crohn’s disease and their healthy relatives. Gastroenterology 1989; 97(4):927–931.

    PubMed  CAS  Google Scholar 

  81. Arnott IDR, Kingstone K, Ghosh S. Abnormal intestinal permeability predicts relapse in inactive Crohn’s disease. Scand J Gastroenterol 2000; 35(1163–70).

    Google Scholar 

  82. Wyatt J, Vogelsang H, Hubl W et al. Intestinal permeability and the prediction of relapse in Crohn’s disease. Lancet 1993; 341(8858):1437–1439.

    Article  PubMed  CAS  Google Scholar 

  83. Zeissig S, Burgel N, Gunzel D et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 2007; 56(1):61–72.

    Article  PubMed  CAS  Google Scholar 

  84. Van der Sluis M, De Koning BA, De Bruijn AC et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 2006; 131(1):117–129.

    Article  PubMed  CAS  Google Scholar 

  85. Duerr RH, Taylor KD, Brant SR et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314:1461–1463.

    Article  PubMed  CAS  Google Scholar 

  86. Hue S, Ahern P, Buonocore S et al. Interleukin-23 drives innate and T-cell-mediated intestinal inflammation. J Exp Med 2006; 203(11):2473–2483.

    Article  PubMed  CAS  Google Scholar 

  87. Kullberg MC, Jankovic D, Feng CG et al. IL-23 plays a key role in Helicobacter hepaticus-induced T-cell-dependent colitis. J Exp Med 2006; 203(11):2485–2494.

    Article  PubMed  CAS  Google Scholar 

  88. Uhlig HH, McKenzie BS, Hue S et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 2006; 25(2):309–318.

    Article  PubMed  CAS  Google Scholar 

  89. Harrington LE, Hatton RD, Mangan PR et al. Interleukin 17-producing CD4+ effector T-cells develop via a lineage distinct from the T-helper type 1 and 2 lineages. Nat Immunol 2005; 6(11):1123–1132.

    Article  PubMed  CAS  Google Scholar 

  90. Bettelli E, Kuchroo VK. IL-12-and IL-23-induced T-helper cell subsets: birds of the same feather flock together. J Exp Med 2005; 202(2):169–171.

    Article  Google Scholar 

  91. Park H, Li Z, Yang XO et al. A distinct lineage of CD4 T-cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6(11):1133–1141.

    Article  PubMed  CAS  Google Scholar 

  92. Langrish CL, McKenzie BS, Wilson NJ et al. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 2004; 202:96–105.

    Article  PubMed  CAS  Google Scholar 

  93. Papadakis K, Targan S. The role of chemokines and chemokine receptors in mucosal inflammation. Inflamm Bowel Dis 2000; 6(4):303–313.

    Article  PubMed  CAS  Google Scholar 

  94. Drakes ML, Blanchard TG, Czinn SJ. Colon lamina propria dendritic cells induce a proinflammatory cytokine response in lamina propria T-cells in the SCID mouse model of colitis. J Leukoc Biol 2005; 78(6):1291–1300.

    Article  PubMed  CAS  Google Scholar 

  95. Rescigno M, Urbano M, Valzasina B et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2001; 2(4):361–367.

    Article  PubMed  CAS  Google Scholar 

  96. Chieppa M, Rescigno M, Huang AY et al. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 2006; 203(13):2841–2852.

    Article  PubMed  CAS  Google Scholar 

  97. Karlsson H, Larsson P, Wold AE et al. Pattern of cytokine responses to gram-positive and gram-negative commensal bacteria is profoundly changed when monocytes differentiate into dendritic cells. Infect Immun 2004; 72(5):2671–2678.

    Article  PubMed  CAS  Google Scholar 

  98. O’Mahony L, O’Callaghan L, McCarthy J et al. Differential cytokine response from dendritic cells to commensal and pathogenic bacteria in different lymphoid compartments in humans. Am J Physiol—Gastrointestinal and Liver Physiology 2006; 290(4):G839–845.

    Article  CAS  Google Scholar 

  99. Christensen H, Frokiar H, Pestka JJ. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 2002; 168:171–178.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Salzman, N.H., Bevins, C.L. (2008). Negative Interactions with the Microbiota: IBD. In: Huffnagle, G.B., Noverr, M.C. (eds) GI Microbiota and Regulation of the Immune System. Advances in Experimental Medicine and Biology, vol 635. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09550-9_6

Download citation

Publish with us

Policies and ethics