Skip to main content

Effects of Microbiota on GI Health: Gnotobiotic Research

  • Chapter
GI Microbiota and Regulation of the Immune System

Part of the book series: Advances in Experimental Medicine and Biology ((volume 635))

Abstract

The complex interactions between the GI tract microbiota and the immune system can be simplified for study using gnotobiotic animal models. The importance of cytokines, such as IFN-γ, TNF-α, TGF-β, Interleukin-2, IL-4 and IL-10 in the host response to intestinal bacteria has been evaluated using gnotobiotic studies. Gnotobiotic experiments with immunodeficient animals have revealed insights into the relationships between innate, cell-mediated and antibody-mediated immune system components in resistance to infectious microorganisms. The development and maturation of the immune system is dependent on the presence of some members of the intestinal microbiota. The commensal microorganisms, in turn, are dependent on the environment and nutrients provided by the GI tract of the host. Gnotobiotic studies are starting to reveal how the microbiota influences oral tolerance to dietary and commensal bacterial antigens. The immunomodulatory effects of microbiota and probiotics for inflammatory bowel diseases and the role of bacteria in their etiologies are being studied in gnotobiotic systems. Many aspects of the host interaction with the microbiota have been and will continue to be best addressed in gnotobiotic experimental models. This chapter reviews the contributions that gnotobiology has made to our understanding of the microbiota and host GI tract health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg RD. The indigenous gastrointestinal microflora. Trends Microbiol 1996; 4:430–435.

    Article  PubMed  CAS  Google Scholar 

  2. Balish E, Balish MJ, Salkowski CA et al. Colonization of congenitally athymic, gnotobiotic mice by Candida albicans. Appl Environ Microbiol 1984; 47:647–652.

    PubMed  CAS  Google Scholar 

  3. Yamazaki S, Machii K, Tsuyuki S et al. Immunological responses to monoassociated Bifidobacterium longum and their relation to prevention of bacterial invasion. Immunol 1985; 56:43–50.

    CAS  Google Scholar 

  4. Cantorna MT, Balish E. Mucosal and systemic candidiasis in congenitally immunodeficient mice. Infect Immun 1990; 58:1093–1100.

    PubMed  CAS  Google Scholar 

  5. Cantorna MT, Balish E. Acquired immunity to systemic candidiasis in immunodeficient mice. J Infect Dis 1991; 164:936–943.

    PubMed  CAS  Google Scholar 

  6. Cantorna M, Mook D, Balish E. Resistance of congenitally immunodeficient gnotobiotic mice to vaginal candidiasis. Infect Immun 1990; 58:3813–3815.

    PubMed  CAS  Google Scholar 

  7. Balish E, Jensen J, Warner T et al. Mucosal and disseminated candidiasis in gnotobiotic SCID mice. J Med Vet Mycol 1993; 31:143–154.

    Article  PubMed  CAS  Google Scholar 

  8. Cantorna M, Balish E. Role of CD4+ lymphocytes in resistance to mucosal candidiasis. Infect Immun 1991; 59:2447–2455.

    PubMed  CAS  Google Scholar 

  9. Balish E, Filutowicz H, Oberley TD. Correlates of cell-mediated immunity in Candida albicans-colonized gnotobiotic mice. Infect Immun 1990; 58:107–113.

    PubMed  CAS  Google Scholar 

  10. Jensen J, Vázquez-Torres A, Balish E. Poly(I.C)-induced interferons enhance susceptibility of SCID mice to systemic candidiasis. Infect Immun 1992; 60:4549–4557.

    PubMed  CAS  Google Scholar 

  11. Vázquez-Torres A, Jones-Carson J, Wagner RD et al. Early resistance of interleukin-10 knockout mice to acute systemic candidiasis. Infect Immun 1999; 67:670–674.

    PubMed  Google Scholar 

  12. Balish E, Wagner RD, Vázquez-Torres A et al. Candidiasis in interferon-γ knockout (IFN-γ-/-) mice. J Infect Dis 1998; 178:478–487.

    PubMed  CAS  Google Scholar 

  13. Balish E, Wagner RD, Vázquez-Torres A et al. Mucosal and systemic candidiasis in IL-8Rh-/- BALB/c mice. J Leukocyte Biol 1999; 66:144–150.

    PubMed  CAS  Google Scholar 

  14. Wagner RD, Vázquez-Torres A, Jones-Carson et al. B-cell knockout mice are resistant to mucosal and systemic candidiasis of endogenous origin but susceptible to experimental systemic candidiasis. J Infect Dis 1996; 174:589–597.

    PubMed  CAS  Google Scholar 

  15. Balish E, Vázquez-Torres FA, Jones-Carson J et al. Importance of β2-microglobulin in murine resistance to mucosal and systemic candidiasis. Infect Immun 1996; 64:5092–5097.

    PubMed  CAS  Google Scholar 

  16. Warner T, Madsen J, Starling J et al. Human HLA-B27 gene enhances susceptibility of rats to oral infection by Listeria monocytogenes. Am J Pathol 1996; 149:1737–1743.

    PubMed  CAS  Google Scholar 

  17. Balish E, Warner T, Pierson CJ et al. Oroesophageal candidiasis is lethal for transgenic mice with combined natural killer and T-cell defects. Med Mycol 2001; 39:261–268.

    Article  PubMed  CAS  Google Scholar 

  18. Schofield DA, Westwater C, Balish E. β-defensin expression in immunocompetent and immunodeficient germ-free and Candida albicans-monoassociated mice. J Infect Dis 2004; 190:1327–1334.

    Article  PubMed  CAS  Google Scholar 

  19. Schofield DA, Westwater C, Warner T et al. Hydrolytic gene expression during oroesophageal and gastric candidiasis in immunocompetent and immunodeficient gnotobiotic mice. J Infect Dis 2003; 188:591–599.

    Article  PubMed  CAS  Google Scholar 

  20. Steffen EK, Berg RD, Deitch EA. Comparison of translocation rates of various indigenous bacteria from the gastrointestinal tract to the mesenteric lymph node. J Infect Dis 1988; 157:1032–1038.

    PubMed  CAS  Google Scholar 

  21. Gaboriau-Routhiau V, Raibaud P, Dubuquoy C et al. Colonization of gnotobiotic mice with human gut microflora at birth protects against Escherichia coli heat-labile enterotoxin-mediated abrogation of oral tolerance. Pediatr Res 2003; 54:739–746.

    Article  PubMed  Google Scholar 

  22. Gunzer F, Hennig-Pauka I, Waldman K-H et al. Gnotobiotic piglets develop thrombotic microangiopathy after oral infection with enterohemorrhagic Escherichia coli. Am J Clin Pathol 2002; 118:364–375.

    Article  PubMed  Google Scholar 

  23. Syder AJ, Oh JD, Guruge JL et al. The impact of parietal cells on Helicobacter pylori tropism and host pathology: An analysis using gnotobiotic normal and transgenic mice. Proc Natl Acad Sci 2003; 100:3467–3472.

    Article  PubMed  CAS  Google Scholar 

  24. Björkholm B, Guruge J, Karlsson M et al. Gnotobiotic transgenic mice reveal that transmission of Helicobacter pylori is facilitated by loss of acid-producing parietal cells in donors and recipients. Microbes Infect 2004; 6:213–220.

    Article  PubMed  Google Scholar 

  25. Herías MV, Midtvedt T, Hansen LÅ et al. Increased antibody production against gut-colonizing Escherichia coli in the presence of the anaerob bacterium Peptostreptococcus. Scand J Immunol 1998; 48:277–282.

    Article  PubMed  Google Scholar 

  26. Lima-Filho JVM, Vieira LQ, Arantes RME et al. Effect of the Escherichia coli EMO strain on experimental infection by Salmonella enterica serovar Typhimurium in gnotobiotic mice. Braz J Med Biol Res 2004; 37:1005–1013.

    Article  PubMed  CAS  Google Scholar 

  27. Ŝplíchal I, Trebichavský I, Ŝplíchalová A et al. Protection of gnotobiotic pigs against Salmonella enterica serotype Typhimurium by rough mutant of the same scrotype is accompanied by the change of local and systemic cytokine response. Vet Immunol Immunopathol 2005; 103:155–161.

    Article  PubMed  Google Scholar 

  28. Ramare F, Nicoli J, Dabard J et al. Trypsin-dependent production of an antibacterial substance by a human Peptostreptococcus strain in gnotobiotic rats and in vitro. Appl Environ Microbiol 1993; 59:2876–2883.

    PubMed  CAS  Google Scholar 

  29. Ŝplíchal I, Fagerhol MK, Trebichavský I et al. The effect of intestinal colonization of germ-free pigs with Escherichia coli on calprotectin levels in plasma, intestinal and bronchoalveolar lavages. Immunobiol 2005; 209:681–687.

    Article  Google Scholar 

  30. Hooper LV, Stappenbeck TS, Hong CV et al. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nature Immunol 2003; 4:269–273.

    Article  CAS  Google Scholar 

  31. Wagner RD, Pierson C, Warner T et al. Biotherapeutic effects of probiotic bacteria on candidiasis in immunodeficient mice. Infect Immun 1997; 65:4165–4172.

    PubMed  CAS  Google Scholar 

  32. Wagner RD, Warner T, Roberts L et al. Colonization of congenitally immunodeficient mice with probiotic bacteria. Infect Immun 1997; 65:3345–3351.

    PubMed  CAS  Google Scholar 

  33. Wagner RD, Pierson C, Warner T et al. Probiotic effects of feeding heat-killed Lactobacillus acidophilus and Lactobacillus casei to Candida albicans-colonized immunodeficient mice. J Food Protect 2000; 63:638–644.

    CAS  Google Scholar 

  34. Neumann E, Oliveira MAP, Cabral CM et al. Monoassociation with Lactobacillus acidophilus UFV-H2b20 stimulates the immune defense mechanisms of germfree mice. Braz J Med Biol Res 1998; 31:1565–1573.

    Article  PubMed  CAS  Google Scholar 

  35. Scharek L, Hartmann L, Heinevetter L et al. Bifidobacterium adolescentis modulates the specific immune response to another human gut bacterium, Bacteroides thetaiotaomicron, in gnotobiotic rats. Immunobiol 2000; 202:429–441.

    CAS  Google Scholar 

  36. Prioult G, Fliss I, Pecquet S. Effect of probiotic bacteria on induction and maintenance of oral tolerance to β-lactoglobulin in gnotobiotic mice. Clin Diag Lab Immunol 2003; 10:787–792.

    Article  CAS  Google Scholar 

  37. Link H, Rochat F, Saudan KY et al. Immunomodulation of the gnotobiotic mouse through colonization with lactic acid bacteria. In: Mestecky J, Russell MW, Jackson S et al, eds. Advances in Mucosal Immunology, 1st ed. New York: Plenum Press, 1995:441–446.

    Google Scholar 

  38. Silva AM, Barbosa FHF, Duarte R et al. Effect of Bifidobacterium longum ingestion on experimental salmonellosis in mice. J Appl Microbiol 2004; 97:29–37.

    Article  PubMed  CAS  Google Scholar 

  39. Wagner RD, Dohnalek M, Hilty M et al. Effects of probiotic bacteria on humoral immunity to Candida albicans in immunodeficient bg/bg-nu/nu and bg/bg-nu/+ mice. Revista Iberoamcrica Micologia 2000; 17:55–59.

    CAS  Google Scholar 

  40. Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucous layer. Am J Clin Nutr 2001; 73:1131S–1141S.

    PubMed  CAS  Google Scholar 

  41. Driessen A, Van Gineken C, Creemers J et al. Historical and immunohistochemical study of the lymphoid tissue in the normal stomach of the gnotobiotic pig. Virchows Arch 2002; 441:589–598.

    Article  PubMed  Google Scholar 

  42. Shroff KE, Cebra JJ. Development of mucosal humoral immune responses in germ-free (GF) mice. In: Mestecky J, Russell MW, Jackson S et al, eds. Advances in Mucosal Immunology, 1st ed. New York: Plenum Press, 1995:441–446.

    Google Scholar 

  43. Yamanaka T, Helgeland L, Farstad IN et al. Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer’s patches. J Immunol 2003; 170:816–822.

    PubMed  CAS  Google Scholar 

  44. Macpherson AJ, Gatto D, Sainsbury E et al. A primitive T-cell-dependent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 2000; 288:2222–2225.

    Article  PubMed  CAS  Google Scholar 

  45. Huang BF-P, Platt N, Wykes M et al. A discrete, subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T-cell areas of mesenteric lymph nodes. J Exp Med 2000; 191:435–443.

    Article  PubMed  CAS  Google Scholar 

  46. Maeda Y, Noda S, Tanaka K et al. The failure of oral tolerance induction is functionally coupled to the absence of T-cells in Peyer’s patches under germfree conditions. Immunobiol 2001; 204:442–457.

    Article  CAS  Google Scholar 

  47. Thurnheer MC, Zuercher AW, Cebra JJ et al. B1 cells contribute to serum IgM, but not to intestinal IgA, production in gnotobiotic Ig allotype chimeric mice. J Immunol 2003; 170:4564–4571.

    PubMed  CAS  Google Scholar 

  48. Jiang HQ, Zuercher AW, Boiko NV et al. Interactions of commensal gut microbes with subsets of B-and T-cells in the murine host. Vaccine 2004; 22:805–811.

    Article  PubMed  CAS  Google Scholar 

  49. Klaasen HLBM, Van der Heijden PJ, Stok W et al. Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice. Infect Immun 1993; 61:303–306.

    PubMed  CAS  Google Scholar 

  50. Setoyama H, Imaoka A, Ishikawa H et al. Prevention of gut inflammation by Bifidobacterium in dextran sulfate-treated mice associated with Bacteroides strains isolated from ulcerative colitis patients. Microbes Infect 2003; 5:115–122.

    Article  PubMed  Google Scholar 

  51. Veltkamp C, Tonkonogy SL, De Jong YP et al. Continuous stimulation by normal luminal bacteria is essential for the development and perpetuation of colitis in Tgε26 mice. Gastroenterology 2001; 120:900–913.

    Article  PubMed  CAS  Google Scholar 

  52. Tlaskalová-Hogenová H, Tucková L, Stepánková R et al. Involvement of innate immunity in the development of inflammatory and autoimmune diseases. Ann NY Acad Sci 2005; 1051:787–798.

    Article  PubMed  Google Scholar 

  53. Stecher B, Macpherson AJ, Hapfelmeier S et al. Comparison of Salmonella enterica serovar Typhimurium colitis in germfree mice and mice pretreated with streptomycin. Infect Immun 2005; 73:3228–3241.

    Article  PubMed  CAS  Google Scholar 

  54. Waidmann M, Bechtold O, Frick J-S et al. Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice. Gastroenterology 2003; 125:162–177.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Wagner, R.D. (2008). Effects of Microbiota on GI Health: Gnotobiotic Research. In: Huffnagle, G.B., Noverr, M.C. (eds) GI Microbiota and Regulation of the Immune System. Advances in Experimental Medicine and Biology, vol 635. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09550-9_4

Download citation

Publish with us

Policies and ethics