Skip to main content

Overview of Gut Immunology

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((volume 635))

Abstract

The gastrointestinal tract (GI tract) plays dual roles in human physiology: digestion and uptake of nutrients and the more daunting task of maintaining immune homeostasis (protecting the body from potentially harmful microbes, while inducing tolerogenic responses to innocuous food, commensals and self-antigens). The unique architecture of the GI tract facilitates both of these functions; multiple levels of infolding results in an immense overall surface area that allows maximal nutrient absorption while housing the largest number of immune cells in the body. This review will focus on how mucosal immune responses generated in the GI tract are organized and controlled. The gastro-intestinal associated lymphoid tissue (GALT), which is composed of discrete inductive and effectors sites, is able to discriminate between harmful and harmless antigens while maintaining homeostasis. Inductive sites are organized into specialized aggregations of lymphoid follicles called Peyer’s patches (PP), while effector sites are more diffusely dispersed. The separation of these sites serves to limit and control immune responses. In addition to its distinct architecture, the GI tract has specialized immune cells that aid in promoting a tolerogenic response to orally introduced antigens, (e.g. subsets of dendritic cells (DCs) and regulatory T-cells (TR)). Secretory IgA (sIgA), which is produced in appreciable quantities at mucosal surfaces, also promotes an anti-inflammatory environment by neutralizing immune stimulatory antigens. The mechanisms of induction tolerance are currently poorly understood; however, this tolerant environment limits potentially damaging inflammatory responses to inappropriate stimuli.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friedman A, Weiner HL. Induction of anergy or active suppression following oral tolerance is determined by antigen dosage. Proc Natl Acad Sci USA 1994; 91:6688–92.

    Article  PubMed  CAS  Google Scholar 

  2. Mowat A. The anatomical basis of mucosal immune responses. Immunol Rev 1997; (156):145–66.

    Article  PubMed  CAS  Google Scholar 

  3. Elson CO, Ealding W. Cholera toxin feeding did not induce oral tolerance in mice and abrogated oral tolerance to an unrelated protein antigen. J Immunol 1984; 133(6):2892–7.

    PubMed  CAS  Google Scholar 

  4. Mowat AM, Maloy KJ, Donachie AM. Imune-stimulating complexes as adjuvants for inducing local and systemic immunity after oral immunization with protein antigens. Immunology 1993; 80(4):527–34.

    PubMed  CAS  Google Scholar 

  5. Sudo N, Sawamura S, Tanaka K et al. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 1997; 159(4):1739–45.

    PubMed  CAS  Google Scholar 

  6. Pecquet S, Prioult G, Campbell J et al. Commonly used drugs impair oral tolerance in mice. Ann NY Acad Sci 2004; 1029:374–8.

    Article  PubMed  CAS  Google Scholar 

  7. Kraehenbuhl J, Neutra M. Epithelial M-cells: differentiation and function. Annu Rev Cell Dev Biol 2000; 16:301–32.

    Article  PubMed  CAS  Google Scholar 

  8. MacDonald T, Monteleone G. Immunity, inflammation and allergy in the gut. Science 2005; 307(5717):1920–5.

    Article  PubMed  CAS  Google Scholar 

  9. Madara J. Regulation of the movement of solutes across tight junctions. Ann Rev Physiol 1998; 60:143–59.

    Article  CAS  Google Scholar 

  10. Ayabe T, Satchell D, Wilson C et al. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 2000; 1(2):99–100.

    Article  CAS  Google Scholar 

  11. Podolsky D. Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense. Am J Physiol 1999; 277(3):G495–9.

    PubMed  CAS  Google Scholar 

  12. Mowat A. Anatomical Basis of Tolerance and Immunity to Intestinal Antigens. Nat Rev Immunol 2003; 3:331–41.

    Article  PubMed  CAS  Google Scholar 

  13. Hamada H, Hiroi T, Nishiyama Y et al. Identification of Multiple Isolated Lymphoid Follicles on the AntiMesenteric Wall of the Mouse Small Intestine. J Immunol 2002; 168(1):57–64.

    PubMed  CAS  Google Scholar 

  14. Neutra M, Frey A, Kraehenbuhl J. Epithelial M-cells: Gateways for mucosal infection and immunization. Cell 1996; 86:345–8.

    Article  PubMed  CAS  Google Scholar 

  15. Debard N, Sierro F, Browning J et al. Effect of mature lymphocytes and lymphotoxin on the development of the follicle-associted epithelium and M-cells in mouse Peyer’s patches. Gastroenterology 2001; 120:1173–82.

    Article  PubMed  CAS  Google Scholar 

  16. Gordon H, Pesti L. The gnotobiotic animal as a tool in the study of host-microbial relationships. Bacteriol Rev 1971; 35:390–429.

    PubMed  CAS  Google Scholar 

  17. Steeber DA, Tang ML, Zhang XQ et al. Efficient lymphocyte migration across high endothelial venules of mouse Peyer’s patches requires overlapping expression of L-selectin and beta7 integrin. J Immunol 1998; 161(12):6638–47.

    PubMed  CAS  Google Scholar 

  18. Hurley BP, McCormick BA. Intestinal epithelial defense systems protect against bacterial threats. Curr Gastroenterol Rep 2004; 6(5):355–61.

    Article  PubMed  Google Scholar 

  19. Rimoldi M, Chieppa M, Salucci V et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat Immunol 2005; 6(5):507–14.

    Article  PubMed  CAS  Google Scholar 

  20. Hershberg R, Cho D, Youakim A et al. Highly Polarized HLA Class II Antigen Processing and Presentation by Human Intestinal Epithelial Cells. J Clin Invest 1998; 102(4):792–803.

    Article  PubMed  CAS  Google Scholar 

  21. Sanderson I, Ouellette A, Carter E et al. Differential regulation of B7 mRNA in enterocytes and lymphoid cells. Immunology 1993; 79:434–8.

    PubMed  CAS  Google Scholar 

  22. MacDonald T, Pender S. Lamina propria T-cells. Chem Immunol 1998; 71:103–17.

    Article  PubMed  CAS  Google Scholar 

  23. Niess J, Reinecker H. Dendritic cells: the commanders-in-chief of mucosal immune defenses. Curr Opin Gastroenterol 2006; 22:354–60.

    Article  PubMed  Google Scholar 

  24. Iwasaki A, Kelsall B. Unique functions of CD11b+, CD8 alpha+and double-negative Peyer’s patch dendritic cells. J Immunol 2001; 166(8):4884–90.

    PubMed  CAS  Google Scholar 

  25. Castellaneta A, Abe M, Morelli A et al. Identification and characterization of intestinal Peyer’s patch interferon-alpha producing (plasmacytoid) dendritic cells. Hum Immunol 2004; 65(2):104–13.

    Article  PubMed  CAS  Google Scholar 

  26. Chirdo FG, Millington OR, Beacock-Sharp H et al. Immunomodulatory dendritic cells in intestinal lamina propria. Eur J Immunol 2005; 35(6):1831–40.

    Article  PubMed  CAS  Google Scholar 

  27. Williamson E, Bilsborough J, Viney J. Regulation of mucosal dendritic cell function by receptor activator of NF-kappa B (RANK)/RANK ligand interactions: Impact on tolerance induction. J Immunol 2002; 169(7):3606–12.

    PubMed  CAS  Google Scholar 

  28. Iwasaki A, Kelsall B. Freshly isolated Peyer’s patch, but not spleen, dendritic cells produce interlukin 20 and induce the differentiation of T-helper type 2 cells. J Exp Med 1999; 190:229–39.

    Article  PubMed  CAS  Google Scholar 

  29. Becker C, Wirtz S, Blessing M et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J Clin Invest 2003; 112:693–706.

    PubMed  CAS  Google Scholar 

  30. Johansson-Lindbom B, Svensson M, Pabst O et al. Functional specialization of gut CD103+dendritic cells in the regulation of tissue-selective T-cell homing. J Exp Med 2005; 202:1063–73.

    Article  PubMed  CAS  Google Scholar 

  31. Kilshaw P. Expression of the mucosal T-cell integrin alpha M290 beta 7 by a major subpopulation of dendritic cells in mice. Eur J Immunol 1993; 23:3365–8.

    Article  PubMed  CAS  Google Scholar 

  32. Andrew D, Rott L, Kilshaw P et al. Distribution of alpha 4 beta 7 and alpha E beta 7 integrins on thymocytes, intestinal epithelial lymphocytes and peripheral lymphocytes. European J Immunol 1996; 26:897–905.

    Article  CAS  Google Scholar 

  33. Cepek K, Parker C, Madara J et al. Integrin alpha E beta 7 mediates adhesion of T-lymphocytes to epithelial cells. J Immunol 1993; 150:3459–70.

    PubMed  CAS  Google Scholar 

  34. Annacker O, Coombes J, Malmstrom V et al. Essential role for CD 103 in the T-cell-mediated regulation of experimental colitis. J Exp Med 2005; 202:1051–61.

    Article  PubMed  CAS  Google Scholar 

  35. Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 2007; 7(3):179–90.

    Article  PubMed  CAS  Google Scholar 

  36. Sansonetti P. Host-pathogen interactions: the seduction of molecular cross talk. Gut 2002; 50(Suppl 3):1112–8.

    Google Scholar 

  37. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F et al. Recognition of Commensal Microflora by Toll-Like Receptors is Required for Intestinal Homeostasis. Cell 2004; 118:229–41.

    Article  PubMed  CAS  Google Scholar 

  38. Matzinger P. The danger model: A renewed sense of self. Science 2002; 296(5566):301–5.

    Article  PubMed  CAS  Google Scholar 

  39. Seong SY, Matzinger P. Hydrophobicity: An ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 2004; 4(6):469–78.

    Article  PubMed  CAS  Google Scholar 

  40. Liew FY, Xu D, Brint EK et al. Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol 2005; 5(6):446–58.

    Article  PubMed  CAS  Google Scholar 

  41. Janssens S, Burns K, Tschopp J et al. Regulation of interleukin-1-and lipopolysaccharide-induced NF-kappaB activation by alternative splicing of MyD88. Curr Biol 2002; 12(6):467–71.

    Article  PubMed  CAS  Google Scholar 

  42. Negishi H, Ohba Y, Yanai H et al. Negative regulation of Toll-like-receptor signaling by IRF-4. Proc Natl Acad Sci USA 2005; 102(44):15989–94.

    Article  PubMed  CAS  Google Scholar 

  43. Baetz A, Frey M, Heeg K et al. Suppressor of cytokine signaling (SOCS) proteins indirectly regulate toll-like receptor signaling in innate immune cells. J Biol Chem 2004; 279(52):54708–15.

    Article  PubMed  CAS  Google Scholar 

  44. Netea MG, Ferwerda G, de Jong DJ et al. Nucleotide-binding oligomerization domain-2 modulates specific TLR pathways for the induction of cytokine release. J Immunol 2005; 174(10):6518–23.

    PubMed  CAS  Google Scholar 

  45. Fukao T, Tanabe M, Terauchi Y et al. PI3K-mediated negative feedback regulation of IL-12 production in DCs. Nat Immunol 2002; 3(9):875–81.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang G, Ghosh S. Negative regulation of toll-like receptor-mediated signaling by Tollip. J Biol Chem 2002; 277(9):7059–65.

    Article  PubMed  CAS  Google Scholar 

  47. Boone DL, Turer EE, Lee EG et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004; 5(10):1052–60.

    Article  PubMed  CAS  Google Scholar 

  48. Feterowski C, Novotny A, Kaiser-Moore S et al. Attenuated pathogenesis of polymicrobial peritonitis in mice after TLR2 agonist pretreatment involves ST2 up-regulation. Int Immunol 2005; 17(8):1035–46.

    Article  PubMed  CAS  Google Scholar 

  49. Diehl GE, Yue HH, Hsieh K et al. TRAIL-R as a negative regulator of innate immune cell responses. Immunity 2004; 21(6):877–89.

    Article  PubMed  CAS  Google Scholar 

  50. Wald D, Qin J, Zhao Z et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 2003; 4(9):920–7.

    Article  PubMed  CAS  Google Scholar 

  51. Divanovic S, Trompette A, Atabani SF et al. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP 105. Nat Immunol 2005; 6(6):571–8.

    Article  PubMed  CAS  Google Scholar 

  52. Chuang TH, Ulevitch RJ. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol 2004; 5(5):495–502.

    Article  PubMed  CAS  Google Scholar 

  53. Aliprantis AO, Yang RB, Mark MR et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 1999; 285(5428):736–9.

    Article  PubMed  CAS  Google Scholar 

  54. Ruckdeschel K, Pfaffinger G, Haase R et al. Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages. J Immunol 2004; 173(5):3320–8.

    PubMed  CAS  Google Scholar 

  55. Watanabe T, Kitani A, Murray PJ et al. Nucleotide binding oligomerization domain 2 deficiency leads to dysregulated TLR2 signaling and induction of antigen-specific colitis. Immunity 2006; 25(3):473–85.

    Article  PubMed  CAS  Google Scholar 

  56. Coombes JL, Maloy KJ. Control of intestinal homeostasis by regulatory T-cells and dendritic cells. Semin Immunol 2007.

    Google Scholar 

  57. Sakaguchi S. Naturally arising CD4+ regulatory T-cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22:531–62.

    Article  PubMed  CAS  Google Scholar 

  58. Izcue A, Coombes JL, Powrie F. Regulatory T-cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol Rev 2006; 212:256–71.

    Article  PubMed  CAS  Google Scholar 

  59. Fontenot JD, Rasmussen JP, Williams LM et al. Regulatory T-cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005; 22(3):329–41.

    Article  PubMed  CAS  Google Scholar 

  60. Hori S, Nomura T, Sakaguchi S. Control of regulatory T-cell devleopment by the transcription factor Foxp3. Science 2003; 299:1057–61.

    Article  PubMed  CAS  Google Scholar 

  61. Wan Y, Flavell R. Identifying Foxp3-expressing suppressor T-cells with a bicistronic reporter. Proc Natl Acad Sci USA 2005; 102:5126–31.

    Article  PubMed  CAS  Google Scholar 

  62. Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+ CD25+ regulatory T-cells. J Immunol 2003; 170(8):3939–43.

    PubMed  CAS  Google Scholar 

  63. Read S, Malmstrom V, Powrie F. Cytotoxic T-lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+) CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 2000; 192(2):295–302.

    Article  PubMed  CAS  Google Scholar 

  64. Thorstenson K, Khoruts A. Generation of anergic and potentially immunoregulatory CD25+ CD4+ T-cells in vivo after induction of peripheral tolerance iwth intravenous or oral antigen. J Immunol 2001; 167:188–95.

    PubMed  CAS  Google Scholar 

  65. Mowat A. The regulation of immune responses to dietary protein antigens. Immunology Today 1987; 8:93–5.

    Article  CAS  Google Scholar 

  66. Chen Y, Kuchroo V, Inobe J et al. Regulatory T-cell clones induced by oral tolerance: Suppression of auto-immune encephalomyelitis. Science 1994; 265:1203–13.

    Google Scholar 

  67. Miller A, Lider O, Roberts A et al. Suppressor T-cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor b after natigen specific triggering. Proc Natl Acad Sci USA 1991; 89:421–5.

    Article  Google Scholar 

  68. Vieira P, Christensen J, Minaee S et al. IL-10-secreting regulatory T-cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+ CD25+ regulatory T-cells. J Immunol 2004; 172:5986–93.

    PubMed  CAS  Google Scholar 

  69. Groux H, O’Garra A, Bigler M et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nat Immunol 1997; 389:737–42.

    CAS  Google Scholar 

  70. Mills K. Regulatory T-cells: Friend or foe in immunity to infection? Nat Rev Immunol 2004; 4:841–55.

    Article  PubMed  CAS  Google Scholar 

  71. Suzuki K. Oida T, Hamada H et al. Gut cryptopatches: Direct evidence of extrathymic anatomical sites for intestinal T-lymphopoiesis. Immunity 2000; 13(5):691–702.

    Article  PubMed  CAS  Google Scholar 

  72. Poussier P, Ning T, Banerjee D et al. A unique subset of self-specific intraintestinal T-cells maintains gut integrity. J Exp Med 2002; 195(11):1491–7.

    Article  PubMed  CAS  Google Scholar 

  73. Ke Y, Pearce K, Lake J et al. gd T-lymphocytes regulate the induction of oral tolerance. J Immunol 1997; 58:3610–8.

    Google Scholar 

  74. Kerr MA. The structure and function of human IgA. Biochem J 1990; 271(2):285–96.

    PubMed  CAS  Google Scholar 

  75. Conley ME, Delacroix DL. Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann Int Med 1987; 106(6):892–9.

    PubMed  CAS  Google Scholar 

  76. Mestecky J. Mucosal Immunology. 2nd ed. London: Academic Press, 1998.

    Google Scholar 

  77. Snoeck V, Peters I, Cox E. The IgA system: a comparison of structure and function in different species. Vet Res 2006; 37(3):455–67.

    Article  PubMed  CAS  Google Scholar 

  78. Johansen F, Braathen R, Brandtzaeg P. The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA. Immunology 2001; 167(9):5185–92.

    CAS  Google Scholar 

  79. Sorensen V, Rasmussen I, Sundvold V et al. Structural requirements for incorporation of J chain into human IgM and IgA. Int Immunol 2000; 12(1):19–27.

    Article  PubMed  CAS  Google Scholar 

  80. Vaerman J, Langendries A, Maelen CV. Homogenous IgA monomers, dimers, trimers and tetramers from the same IgA myeloma serum. Immunol Invest 1995; 24(4):631–41.

    Article  PubMed  CAS  Google Scholar 

  81. Brandtzaeg P, Farstad I, Johansen F et al. The B-cell system of human mucosae and exocrine glands. Immunol Rev 1999; 171:45–87.

    Article  PubMed  CAS  Google Scholar 

  82. Apodaca G, Bomsel M, Arden J et al. The polymeric immunoglobulin receptor. A model protein to study transcytosis. J Clin Invest 1991; 87(6):1877–82.

    Article  PubMed  CAS  Google Scholar 

  83. Norderhaug I, Johansen F, Schjerven H et al. Regulation of the formation and external transport of secretory immunoglobulins. Crit Rev Immunol 1999; 19(5–6):481–508.

    PubMed  CAS  Google Scholar 

  84. Crottet P, Corthesy B. Secretory component delays the conversion of secretory IgA into antigen-binding competent F(ab′)2: A possible implication for mucosal defense. J Immunol 1998; 161(10):5445–53.

    PubMed  CAS  Google Scholar 

  85. Phalipon A, Cardona A, Kraehenbuhl J et al. Secretory component: A new role in secretory IgA-mediated immune exclusion in vivo. Immunity 2002; 17(1):107–15.

    Article  PubMed  CAS  Google Scholar 

  86. Phalipon A, Corthesy B. Novel functions of the polymeric Ig receptor: Well beyond transport of immunoglobulins. Trends Immunol 2003; 24(2):55–8.

    Article  PubMed  CAS  Google Scholar 

  87. Macpherson AJ, Gatto D, Sainsbury E et al. A primitive T-cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 2000; 288(5474):2222–6.

    Article  PubMed  CAS  Google Scholar 

  88. Gardby E, Lane P, Lycke NY. Requirements for B7-CD28 costimulation in mucosal IgA responses: paradoxes observed in CTLA4-H gamma 1 transgenic mice. J Immunol 1998; 161(1):49–59.

    PubMed  CAS  Google Scholar 

  89. Asada Y, Isomoto H, Shikuwa S et al. Development of ulcerative colitis during the course of rheumatoid arthritis: Association with selective IgA deficiency. World J Gastroenterol 2006; 12(32):5240–3.

    PubMed  Google Scholar 

  90. Ammann AJ, Hong R. Selective IgA deficiency: Presentation of 30 cases and a review of the literature. Medicine 1971; 50(3):223–36.

    Article  PubMed  CAS  Google Scholar 

  91. Suzuki K, Meek B, Doi Y et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci USA 2004; 101(7):1981–6.

    Article  PubMed  CAS  Google Scholar 

  92. Friman V, Nowrouzian F, Adlerberth I et al. Increased frequency of intestinal Escherichia coli carrying genes for S fimbriae and haemolysin in IgA-deficient individuals. Microb Pathog 2002; 32(1):35–42.

    Article  PubMed  CAS  Google Scholar 

  93. Rescigno M, Urbano M, Valzasina B et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2001; 2(4):361–7.

    Article  PubMed  CAS  Google Scholar 

  94. Niess J, Brand S, Gu X et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005; 307:254–8.

    Article  PubMed  CAS  Google Scholar 

  95. Salazar-Gonzales R, Niess J, Zammit D et al. CCR6-mediated dendritic cell activation of pathogen specific T-cells in Peyer’s patches. Immunity 2006, in press.

    Google Scholar 

  96. Dieu M, Vanbervliet B, Vicari A et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 1998; 188:373–86.

    Article  PubMed  CAS  Google Scholar 

  97. Worbs T, Bode U, Yan S et al. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J Exp Med 2006; 203(3):519–27.

    Article  PubMed  CAS  Google Scholar 

  98. Bimczok D, Sowa E, Faber-Zuschratter H et al. Site-specific expression of CD11b and SIRPalpha (CD172a) on dendritic cells: implications for their migration patterns in the gut immune system. European J Immunol 2005; 35:1418–27.

    Article  CAS  Google Scholar 

  99. McIntyre T, Strober W. Mucosal Immunol 1999 (2nd ed.): 319–56.

    Google Scholar 

  100. Macpherson A, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004; 303(5664):1662–5.

    Article  PubMed  CAS  Google Scholar 

  101. Berlin C, Berg E, Briskin M et al. Alpha 4 beta 7 integrin mediates lymphocyte, binding to the mucosal vascular addressin MAdCAM-1. Cell 1993; 74(1):185–95.

    Article  PubMed  CAS  Google Scholar 

  102. Braunstein J, Qiao L, Autschbach F et al. T-cells of the human intestinal lamina propria are high producers of interleukin-10. Gut 1997; 41(2):215–20.

    Article  PubMed  CAS  Google Scholar 

  103. Hurst S, Cooper C, Sitterding S et al. The differentiated state of intestinal lamina propria CD4+ T-cells results in altered cytokine production, activation threshold and costimulatory requirements. J Immunol 1999; 163(11):5937–45.

    PubMed  CAS  Google Scholar 

  104. Khoo U, Proctor I, Macpherson A. CD4+ T-cell down-regulation in human intestinal mucosa: evidence for intestinal tolerance to luminal bacterial antigens. J Immunol 1997; 158(8):3626–34.

    PubMed  CAS  Google Scholar 

  105. Lefrançois L, Olson S, Masopust D. A Critical Role for CD40-CD40 Ligand Interactions in Amplification of the Mucosal CD8 T-cell. Response J Exp Med 1999; 190:1275–83.

    Article  Google Scholar 

  106. Masopust D, Vezys V, Marzo AL et al. Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001; 291:2413–7.

    Article  PubMed  CAS  Google Scholar 

  107. Chung CS, Watkins L, Funches A et al. Deficiency of gammadelta T-lymphocytes contributes to mortality and immunosuppression in sepsis. Am J Physiol Regul Integr Comp Physiol 2006; 291(5):R1338–43.

    PubMed  CAS  Google Scholar 

  108. Macpherson AJ, Martinic MM, Harris N. The functions of mucosal T-cells in containing the indigenous commensal flora of the intestine. Cell Mol Life Sci 2002; 59(12):2088–96.

    Article  PubMed  CAS  Google Scholar 

  109. Dewhirst F, Chien C, Paster B et al. Phylogeny of the defined murine microbiota: Altered Schaedler flora. Applied and Environmental Microbiology 1999; 65(8):3287–92.

    PubMed  CAS  Google Scholar 

  110. Sarma-Rupavtarm R, Ge Z, Schauer D et al. Spatial distribution and stability of the eight microbial species of the altered schaedler flora in the mouse gastrointestinal tract. Appl Environ Microbiol 2004; 70(5):2791–800.

    Article  PubMed  CAS  Google Scholar 

  111. Bjorksten B, Naaber P, Sepp E et al. The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clin Exp Allergy 1999; 29(3):342–6.

    Article  PubMed  CAS  Google Scholar 

  112. Sepp E, Julge K, Mikelsaar M et al. Intestinal microbiota and immunoglobulin E responses in 5-year-old Estonian children. Clin Exp Allergy 2005; 35(9):1141–6.

    Article  PubMed  CAS  Google Scholar 

  113. Penders J, Stobberingh EE, Thijs C et al. Molecular fingerprinting of the intestinal microbiota of infants in whom atopic eczema was or was not developing. Clin Exp Allergy 2006; 36(12):1602–8.

    Article  PubMed  CAS  Google Scholar 

  114. Apostolou E, Pelto L, Kirjavainen PV et al. Differences in the gut bacterial flora of healthy and milk-hypersensitive adults, as measured by fluorescence in situ hybridization. FEMS Immunol Med Microbiol 2001; 30(3):217–21.

    Article  PubMed  CAS  Google Scholar 

  115. Kuhbacher T, Scheriber S, Runkel N. Pouchitis: pathophysiology and treatment. Int J Colorectal Dis 1998; 13(5–6):196–207.

    PubMed  CAS  Google Scholar 

  116. O’Brien R. Bacterial vaginosis: Many questions-any answers? Curr Opin Pediatr 2005; 17(4):473–9.

    Article  PubMed  Google Scholar 

  117. Duchmann R, Kaiser I, Hermann E et al. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin Exp Immunol 1995; 102:448–55.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Mason, K.L., Huffnagle, G.B., Noverr, M.C., Kao, J.Y. (2008). Overview of Gut Immunology. In: Huffnagle, G.B., Noverr, M.C. (eds) GI Microbiota and Regulation of the Immune System. Advances in Experimental Medicine and Biology, vol 635. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09550-9_1

Download citation

Publish with us

Policies and ethics