Skip to main content

The Formal Group of an Elliptic Curve

  • Chapter
The Arithmetic of Elliptic Curves

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 106))

  • 21k Accesses

Abstract

Let E be an elliptic curve. In this chapter we study an “infinitesimal” neighborhood of E centered at the origin O.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More precisely, they imply that P F(z, z′) = P z + P z for distinct \(z,z' \in \mathcal{M}\). For z = z′, we can let z′ ↦ z and use the fact that the map zP z and the addition law on E(K) are continuous for the topology induced from K. Alternatively, we could do an explicit, albeit messy, calculation with power series and the duplication formula.

  2. 2.

    The assumption that R has no torsion elements means that if \(n \in \mathbb{Z}\) and α ∈ R satisfy n α = 0, then either n = 0 or α = 0. Equivalently, the natural map \(R \rightarrow K = R \otimes \mathbb{Q}\) is an injection.

References

  1. M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions and an analysis of DHIES. In Topics in cryptology—CT-RSA 2001 (San Francisco, CA), volume 2020 of Lecture Notes in Comput. Sci., pages 143–158. Springer, Berlin, 2001.

    Google Scholar 

  2. D. Abramovich. Formal finiteness and the torsion conjecture on elliptic curves. A footnote to a paper: “Rational torsion of prime order in elliptic curves over number fields” [Astérisque No. 228 (1995), 3, 81–100] by S. Kamienny and B. Mazur. Astérisque, (228):3, 5–17, 1995. Columbia University Number Theory Seminar (New York, 1992).

    Google Scholar 

  3. L. V. Ahlfors. Complex analysis. McGraw-Hill Book Co., New York, third edition, 1978. An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied Mathematics.

    Google Scholar 

  4. T. M. Apostol. Introduction to analytic number theory. Springer-Verlag, New York, 1976. Undergraduate Texts in Mathematics.

    Google Scholar 

  5. T. M. Apostol. Modular functions and Dirichlet series in number theory, volume 41 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1990.

    Google Scholar 

  6. N. Arthaud. On Birch and Swinnerton-Dyer’s conjecture for elliptic curves with complex multiplication. I. Compositio Math., 37(2):209–232, 1978.

    Google Scholar 

  7. E. Artin. Galois theory. Dover Publications Inc., Mineola, NY, second edition, 1998. Edited and with a supplemental chapter by Arthur N. Milgram.

    Google Scholar 

  8. M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.–London–Don Mills, Ont., 1969.

    Google Scholar 

  9. M. F. Atiyah and C. T. C. Wall. Cohomology of groups. In Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), pages 94–115. Thompson, Washington, D.C., 1967.

    Google Scholar 

  10. A. O. L. Atkin and F. Morain. Elliptic curves and primality proving. Math. Comp., 61(203):29–68, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Baker. Transcendental number theory. Cambridge Mathematical Library. Cambridge University Press, Cambridge, second edition, 1990.

    MATH  Google Scholar 

  12. A. Baker and J. Coates. Integer points on curves of genus 1. Proc. Cambridge Philos. Soc., 67:595–602, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Balasubramanian and N. Koblitz. The improbability that an elliptic curve has subexponential discrete log problem under the Menezes-Okamoto-Vanstone algorithm. J. Cryptology, 11(2):141–145, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. F. Beardon. Iteration of Rational Functions, volume 132 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1991. Complex analytic dynamical systems.

    Google Scholar 

  15. E. Bekyel. The density of elliptic curves having a global minimal Weierstrass equation. J. Number Theory, 109(1):41–58, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. In Advances in cryptology—ASIACRYPT 2007, volume 4833 of Lecture Notes in Comput. Sci., pages 29–50. Springer, Berlin, 2007.

    Google Scholar 

  17. B. J. Birch. Cyclotomic fields and Kummer extensions. In Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), pages 85–93. Thompson, Washington, D.C., 1967.

    Google Scholar 

  18. B. J. Birch. How the number of points of an elliptic curve over a fixed prime field varies. J. London Math. Soc., 43:57–60, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  19. B. J. Birch and W. Kuyk, editors. Modular functions of one variable. IV. Springer-Verlag, Berlin, 1975. Lecture Notes in Mathematics, Vol. 476.

    Google Scholar 

  20. B. J. Birch and H. P. F. Swinnerton-Dyer. Notes on elliptic curves. I. J. Reine Angew. Math., 212:7–25, 1963.

    Google Scholar 

  21. B. J. Birch and H. P. F. Swinnerton-Dyer. Elliptic curves and modular functions. In Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pages 2–32. Lecture Notes in Math., Vol. 476. Springer, Berlin, 1975.

    Google Scholar 

  22. I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic curves in cryptography, volume 265 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2000. Reprint of the 1999 original.

    Google Scholar 

  23. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In Advances in Cryptology—CRYPTO 2001 (Santa Barbara, CA), volume 2139 of Lecture Notes in Comput. Sci., pages 213–229. Springer, Berlin, 2001.

    Google Scholar 

  24. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In Advances in cryptology—ASIACRYPT 2001 (Gold Coast), volume 2248 of Lecture Notes in Comput. Sci., pages 514–532. Springer, Berlin, 2001.

    Google Scholar 

  25. A. I. Borevich and I. R. Shafarevich. Number theory. Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20. Academic Press, New York, 1966.

    Google Scholar 

  26. A. Bremner. On the equation Y 2 = X(X 2 + p). In Number theory and applications (Banff, AB, 1988), volume 265 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 3–22. Kluwer Acad. Publ., Dordrecht, 1989.

    Google Scholar 

  27. A. Bremner and J. W. S. Cassels. On the equation Y 2 = X(X 2 + p). Math. Comp., 42(165):257–264, 1984.

    MathSciNet  MATH  Google Scholar 

  28. C. Breuil, B. Conrad, F. Diamond, and R. Taylor. On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc., 14(4):843–939 (electronic), 2001.

    Google Scholar 

  29. F. Brezing and A. Weng. Elliptic curves suitable for pairing based cryptography. Des. Codes Cryptogr., 37(1):133–141, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. L. Brown. Note on supersingular primes of elliptic curves over Q. Bull. London Math. Soc., 20(4):293–296, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  31. W. D. Brownawell and D. W. Masser. Vanishing sums in function fields. Math. Proc. Cambridge Philos. Soc., 100(3):427–434, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  32. Y. Bugeaud. Bounds for the solutions of superelliptic equations. Compositio Math., 107(2):187–219, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. P. Buhler, B. H. Gross, and D. B. Zagier. On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank 3. Math. Comp., 44(170):473–481, 1985.

    MathSciNet  MATH  Google Scholar 

  34. E. R. Canfield, P. Erdős, and C. Pomerance. On a problem of Oppenheim concerning “factorisatio numerorum.” J. Number Theory, 17(1):1–28, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Carayol. Sur les représentations galoisiennes modulo l attachées aux formes modulaires. Duke Math. J., 59(3):785–801, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. W. S. Cassels. A note on the division values of (u). Proc. Cambridge Philos. Soc., 45:167–172, 1949.

    Article  MathSciNet  MATH  Google Scholar 

  37. J. W. S. Cassels. Arithmetic on curves of genus 1. III. The Tate-Šafarevič and Selmer groups. Proc. London Math. Soc. (3), 12:259–296, 1962.

    Google Scholar 

  38. J. W. S. Cassels. Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung. J. Reine Angew. Math., 211:95–112, 1962.

    Google Scholar 

  39. J. W. S. Cassels. Arithmetic on curves of genus 1. V. Two counterexamples. J. London Math. Soc., 38:244–248, 1963.

    Google Scholar 

  40. J. W. S. Cassels. Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer. J. Reine Angew. Math., 217:180–199, 1965.

    Google Scholar 

  41. J. W. S. Cassels. Diophantine equations with special reference to elliptic curves. J. London Math. Soc., 41:193–291, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  42. J. W. S. Cassels. Global fields. In Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), pages 42–84. Thompson, Washington, D.C., 1967.

    Google Scholar 

  43. J. W. S. Cassels. Lectures on elliptic curves, volume 24 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  44. T. Chinburg. An introduction to Arakelov intersection theory. In Arithmetic geometry (Storrs, Conn., 1984), pages 289–307. Springer, New York, 1986.

    Google Scholar 

  45. D. V. Chudnovsky and G. V. Chudnovsky. Padé approximations and Diophantine geometry. Proc. Nat. Acad. Sci. U.S.A., 82(8):2212–2216, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  46. C. H. Clemens. A scrapbook of complex curve theory, volume 55 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2003.

    Google Scholar 

  47. L. Clozel, M. Harris, and R. Taylor. Automorphy for some l-adic lifts of automorphic mod l representations. 2007. IHES Publ. Math., submitted.

    Google Scholar 

  48. J. Coates. Construction of rational functions on a curve. Proc. Cambridge Philos. Soc., 68:105–123, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  49. J. Coates and A. Wiles. On the conjecture of Birch and Swinnerton-Dyer. Invent. Math., 39(3):223–251, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  50. H. Cohen. A Course in Computational Algebraic Number Theory, volume 138 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993.

    Google Scholar 

  51. H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren, editors. Handbook of Elliptic and Hyperelliptic Curve Cryptography. Discrete Mathematics and Its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2006.

    Google Scholar 

  52. D. A. Cox. The arithmetic-geometric mean of Gauss. Enseign. Math. (2), 30(3-4):275–330, 1984.

    MathSciNet  MATH  Google Scholar 

  53. J. Cremona. Elliptic Curve Data. http://sage.math.washington. edu/cremona/index.html , http://www.math.utexas.edu/users/ tornaria/cnt/cremona.html .

  54. J. E. Cremona. Algorithms for modular elliptic curves. Cambridge University Press, Cambridge, second edition, 1997. available free online at www.warwick.ac.uk/ staff/J.E.Cremona/book/fulltext/index.html .

  55. J. E. Cremona, M. Prickett, and S. Siksek. Height difference bounds for elliptic curves over number fields. J. Number Theory, 116(1):42–68, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  56. L. V. Danilov. The Diophantine equation x 3y 2 = k and a conjecture of M. Hall. Mat. Zametki, 32(3):273–275, 425, 1982. English translation: Math. Notes Acad. Sci. USSR 32 (1982), no. 3–4, 617–618 (1983).

    Google Scholar 

  57. H. Davenport. On f 3 (t) − g 2 (t). Norske Vid. Selsk. Forh. (Trondheim), 38:86–87, 1965.

    MathSciNet  MATH  Google Scholar 

  58. S. David. Minorations de formes linéaires de logarithmes elliptiques. Mém. Soc. Math. France (N.S.), (62):iv+143, 1995.

    Google Scholar 

  59. B. M. M. de Weger. Algorithms for Diophantine equations, volume 65 of CWI Tract. Stichting Mathematisch Centrum Centrum voor Wiskunde en Informatica, Amsterdam, 1989.

    Google Scholar 

  60. M. Deuring. Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hansischen Univ., 14:197–272, 1941.

    Article  MathSciNet  MATH  Google Scholar 

  61. M. Deuring. Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. Math.-Phys.-Chem. Abt., 1953:85–94, 1953.

    MathSciNet  MATH  Google Scholar 

  62. M. Deuring. Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins. II. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa., 1955:13–42, 1955.

    Google Scholar 

  63. M. Deuring. Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins. III. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa., 1956:37–76, 1956.

    Google Scholar 

  64. M. Deuring. Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins. IV. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa., 1957:55–80, 1957.

    Google Scholar 

  65. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Information Theory, IT-22(6):644–654, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  66. L. Dirichlet. Über den biquadratischen Charakter der Zahl “Zwei.” J. Reine Angew. Math., 57:187–188, 1860.

    Article  MathSciNet  Google Scholar 

  67. Z. Djabri, E. F. Schaefer, and N. P. Smart. Computing the p-Selmer group of an elliptic curve. Trans. Amer. Math. Soc., 352(12):5583–5597, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  68. D. S. Dummit and R. M. Foote. Abstract algebra. John Wiley & Sons Inc., Hoboken, NJ, third edition, 2004.

    MATH  Google Scholar 

  69. R. Dupont, A. Enge, and F. Morain. Building curves with arbitrary small MOV degree over finite prime fields. J. Cryptology, 18(2):79–89, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  70. B. Dwork. On the rationality of the zeta function of an algebraic variety. Amer. J. Math., 82:631–648, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  71. H. M. Edwards. A normal form for elliptic curves. Bull. Amer. Math. Soc. (N.S.), 44(3):393–422 (electronic), 2007.

    Google Scholar 

  72. M. Eichler. Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion. Arch. Math., 5:355–366, 1954.

    Article  MathSciNet  MATH  Google Scholar 

  73. D. Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.

    Google Scholar 

  74. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inform. Theory, 31(4):469–472, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  75. N. Elkies. List of integers x, y with \(x < 10^{18}\), \(0 < \vert x^{3} - y^{2}\vert < x^{1/2}\). www.math.harvard.edu/~elkies/hall.html.

  76. N. Elkies. \(\mathbb{Z}^{28}\) in \(E(\mathbb{Q})\). Number Theory Listserver, May 2006.

    Google Scholar 

  77. N. D. Elkies. The existence of infinitely many supersingular primes for every elliptic curve over \(\mathbb{Q}\). Invent. Math., 89(3):561–567, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  78. N. D. Elkies. Distribution of supersingular primes. Astérisque, (198-200):127–132 (1992), 1991. Journées Arithmétiques, 1989 (Luminy, 1989).

    Google Scholar 

  79. N. D. Elkies. Elliptic and modular curves over finite fields and related computational issues. In Computational perspectives on number theory (Chicago, IL, 1995), volume 7 of AMS/IP Stud. Adv. Math., pages 21–76. Amer. Math. Soc., Providence, RI, 1998.

    Google Scholar 

  80. J.-H. Evertse. On equations in S-units and the Thue-Mahler equation. Invent. Math., 75(3):561–584, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  81. J.-H. Evertse and J. H. Silverman. Uniform bounds for the number of solutions to Y n = f(X). Math. Proc. Cambridge Philos. Soc., 100(2):237–248, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  82. G. Faltings. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math., 73(3):349–366, 1983.

    Article  MathSciNet  Google Scholar 

  83. G. Faltings. Calculus on arithmetic surfaces. Ann. of Math. (2), 119(2):387–424, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  84. G. Faltings. Finiteness theorems for abelian varieties over number fields. In Arithmetic geometry (Storrs, Conn., 1984), pages 9–27. Springer, New York, 1986. Translated from the German original [Invent. Math. 73 (1983), no. 3, 349–366; ibid. 75 (1984), no. 2, 381; MR 85g:11026ab] by Edward Shipz.

    Google Scholar 

  85. S. Fermigier. Une courbe elliptique définie sur Q de rang ≥ 22. Acta Arith., 82(4):359–363, 1997.

    MathSciNet  Google Scholar 

  86. E. V. Flynn and C. Grattoni. Descent via isogeny on elliptic curves with large rational torsion subgroups. J. Symbolic Comput., 43(4):293–303, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  87. D. Freeman. Constructing pairing-friendly elliptic curves with embedding degree 10. In Algorithmic number theory, volume 4076 of Lecture Notes in Comput. Sci., pages 452–465. Springer, Berlin, 2006.

    Google Scholar 

  88. G. Frey. Links between stable elliptic curves and certain Diophantine equations. Ann. Univ. Sarav. Ser. Math., 1(1):iv+40, 1986.

    Google Scholar 

  89. G. Frey. Elliptic curves and solutions of AB = C. In Séminaire de Théorie des Nombres, Paris 1985–86, volume 71 of Progr. Math., pages 39–51. Birkhäuser Boston, Boston, MA, 1987.

    Google Scholar 

  90. G. Frey. Links between solutions of AB = C and elliptic curves. In Number theory (Ulm, 1987), volume 1380 of Lecture Notes in Math., pages 31–62. Springer, New York, 1989.

    Google Scholar 

  91. G. Frey and H.-G. Rück. A remark concerning m-divisibility and the discrete logarithm problem in the divisor class group of curves. Math. Comp., 62:865–874, 1994.

    MathSciNet  MATH  Google Scholar 

  92. A. Fröhlich. Local fields. In Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), pages 1–41. Thompson, Washington, D.C., 1967.

    Google Scholar 

  93. A. Fröhlich. Formal groups. Lecture Notes in Mathematics, No. 74. Springer-Verlag, Berlin, 1968.

    Google Scholar 

  94. R. Fueter. Ueber kubische diophantische Gleichungen. Comment. Math. Helv., 2(1):69–89, 1930.

    Article  MathSciNet  MATH  Google Scholar 

  95. W. Fulton. Algebraic curves. Advanced Book Classics. Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1989. An introduction to algebraic geometry, Notes written with the collaboration of Richard Weiss, Reprint of 1969 original.

    Google Scholar 

  96. J. Gebel, A. Pethő, and H. G. Zimmer. Computing integral points on elliptic curves. Acta Arith., 68(2):171–192, 1994.

    MathSciNet  MATH  Google Scholar 

  97. S. Goldwasser and J. Kilian. Almost all primes can be quickly certified. In STOC ’86: Proceedings of the eighteenth annual ACM symposium on Theory of computing, pages 316–329, New York, 1986. ACM.

    Google Scholar 

  98. R. Greenberg. On the Birch and Swinnerton-Dyer conjecture. Invent. Math., 72(2):241–265, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  99. P. Griffiths and J. Harris. Principles of algebraic geometry. Wiley Classics Library. John Wiley & Sons Inc., New York, 1994. Reprint of the 1978 original.

    Google Scholar 

  100. B. Gross, W. Kohnen, and D. Zagier. Heegner points and derivatives of L-series. II. Math. Ann., 278(1-4):497–562, 1987.

    Google Scholar 

  101. B. Gross and D. Zagier. Points de Heegner et dérivées de fonctions L. C. R. Acad. Sci. Paris Sér. I Math., 297(2):85–87, 1983.

    Google Scholar 

  102. B. H. Gross and D. B. Zagier. Heegner points and derivatives of L-series. Invent. Math., 84(2):225–320, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  103. R. Gross. A note on Roth’s theorem. J. Number Theory, 36:127–132, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  104. R. Gross and J. Silverman. S-integer points on elliptic curves. Pacific J. Math., 167(2):263–288, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  105. K. Gruenberg. Profinite groups. In Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), pages 116–127. Thompson, Washington, D.C., 1967.

    Google Scholar 

  106. M. Hall, Jr. The Diophantine equation x 3y 2 = k. In Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969), pages 173–198. Academic Press, London, 1971.

    Google Scholar 

  107. D. Hankerson, A. Menezes, and S. Vanstone. Guide to elliptic curve cryptography. Springer Professional Computing. Springer-Verlag, New York, 2004.

    MATH  Google Scholar 

  108. G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. The Clarendon Press Oxford University Press, New York, fifth edition, 1979.

    MATH  Google Scholar 

  109. J. Harris. Algebraic geometry, volume 133 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1992. A first course.

    Google Scholar 

  110. M. Harris, N. Shepherd-Barron, and R. Taylor. A family of Calabi-Yau varieties and potential automorphy. Ann. of Math. (2). to appear.

    Google Scholar 

  111. R. Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.

    Google Scholar 

  112. M. Hazewinkel. Formal groups and applications, volume 78 of Pure and Applied Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1978.

    Google Scholar 

  113. M. Hindry and J. H. Silverman. The canonical height and integral points on elliptic curves. Invent. Math., 93(2):419–450, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  114. M. Hindry and J. H. Silverman. Diophantine geometry, volume 201 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000. An introduction.

    Google Scholar 

  115. G. Hochschild and J.-P. Serre. Cohomology of group extensions. Trans. Amer. Math. Soc., 74:110–134, 1953.

    Article  MathSciNet  MATH  Google Scholar 

  116. J. Hoffstein, J. Pipher, and J. H. Silverman. An introduction to mathematical cryptography. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 2008.

    MATH  Google Scholar 

  117. A. Hurwitz. Über ternäre diophantische Gleichungen dritten Grades. Vierteljahrschrift d. Naturf. Ges. Zürich, 62:207–229, 1917.

    MATH  Google Scholar 

  118. D. Husemöller. Elliptic curves, volume 111 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 2004. With appendices by Otto Forster, Ruth Lawrence and Stefan Theisen.

    Google Scholar 

  119. J.-I. Igusa. Class number of a definite quaternion with prime discriminant. Proc. Nat. Acad. Sci. U.S.A., 44:312–314, 1958.

    Article  MathSciNet  MATH  Google Scholar 

  120. A. Joux. A one round protocol for tripartite Diffie-Hellman. In Algorithmic number theory (Leiden, 2000), volume 1838 of Lecture Notes in Comput. Sci., pages 385–393. Springer, Berlin, 2000.

    Google Scholar 

  121. S. Kamienny. Torsion points on elliptic curves and q-coefficients of modular forms. Invent. Math., 109(2):221–229, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  122. S. Kamienny and B. Mazur. Rational torsion of prime order in elliptic curves over number fields. Astérisque, (228):3, 81–100, 1995. With an appendix by A. Granville, Columbia University Number Theory Seminar (New York, 1992).

    Google Scholar 

  123. N. M. Katz. An overview of Deligne’s proof of the Riemann hypothesis for varieties over finite fields. In Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, Ill., 1974), pages 275–305. Amer. Math. Soc., Providence, R.I., 1976.

    Google Scholar 

  124. N. M. Katz and B. Mazur. Arithmetic moduli of elliptic curves, volume 108 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1985.

    Google Scholar 

  125. M. A. Kenku. On the number of Q-isomorphism classes of elliptic curves in each Q-isogeny class. J. Number Theory, 15(2):199–202, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  126. J.-H. Kim, R. Montenegro, Y. Peres, and P. Tetali. A birthday paradox for Markov chains, with an optimal bound for collision in Pollard rho for discrete logarithm. In Algorithmic number theory, volume 5011 of Lecture Notes in Comput. Sci., pages 402–415. Springer, Berlin, 2008.

    MATH  Google Scholar 

  127. A. W. Knapp. Elliptic curves, volume 40 of Mathematical Notes. Princeton University Press, Princeton, NJ, 1992.

    Google Scholar 

  128. N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177):203–209, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  129. N. Koblitz. Introduction to elliptic curves and modular forms, volume 97 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1993.

    Google Scholar 

  130. V. A. Kolyvagin. Finiteness of \(E(\mathbb{Q})\) and \((E, \mathbb{Q})\) for a subclass of Weil curves. Izv. Akad. Nauk SSSR Ser. Mat., 52(3):522–540, 670–671, 1988.

    Google Scholar 

  131. S. V. Kotov and L. A. Trelina. S-ganze Punkte auf elliptischen Kurven. J. Reine Angew. Math., 306:28–41, 1979.

    MathSciNet  MATH  Google Scholar 

  132. D. S. Kubert. Universal bounds on the torsion of elliptic curves. Proc. London Math. Soc. (3), 33(2):193–237, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  133. E. Kunz. Introduction to plane algebraic curves. Birkhäuser Boston Inc., Boston, MA, 2005. Translated from the 1991 German edition by Richard G. Belshoff.

    Google Scholar 

  134. M. Lal, M. F. Jones, and W. J. Blundon. Numerical solutions of the Diophantine equation y 3x 2 = k. Math. Comp., 20:322–325, 1966.

    Google Scholar 

  135. S. Lang. Elliptic curves: Diophantine analysis, volume 231 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1978.

    Google Scholar 

  136. S. Lang. Introduction to algebraic and abelian functions, volume 89 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1982.

    Google Scholar 

  137. S. Lang. Complex multiplication, volume 255 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1983.

    Google Scholar 

  138. S. Lang. Conjectured Diophantine estimates on elliptic curves. In Arithmetic and geometry, Vol. I, volume 35 of Progr. Math., pages 155–171. Birkhäuser Boston, Boston, MA, 1983.

    Google Scholar 

  139. S. Lang. Fundamentals of Diophantine geometry. Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  140. S. Lang. Elliptic functions, volume 112 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1987. With an appendix by J. Tate.

    Google Scholar 

  141. S. Lang. Number theory III, volume 60 of Encyclopedia of Mathematical Sciences. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  142. S. Lang. Algebraic number theory, volume 110 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1994.

    Google Scholar 

  143. S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New York, third edition, 2002.

    Google Scholar 

  144. S. Lang and J. Tate. Principal homogeneous spaces over abelian varieties. Amer. J. Math., 80:659–684, 1958.

    Article  MathSciNet  MATH  Google Scholar 

  145. S. Lang and H. Trotter. Frobenius distributions in \(\mathop{\mathrm{GL}}\nolimits _{2}\) -extensions. Springer-Verlag, Berlin, 1976. Distribution of Frobenius automorphisms in \(\mathop{\mathrm{GL}}\nolimits _{2}\)-extensions of the rational numbers, Lecture Notes in Mathematics, Vol. 504.

    Google Scholar 

  146. M. Laska. An algorithm for finding a minimal Weierstrass equation for an elliptic curve. Math. Comp., 38(157):257–260, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  147. M. Laska. Elliptic curves over number fields with prescribed reduction type. Aspects of Mathematics, E4. Friedr. Vieweg & Sohn, Braunschweig, 1983.

    Google Scholar 

  148. D. J. Lewis and K. Mahler. On the representation of integers by binary forms. Acta Arith., 6:333–363, 1960/1961.

    Google Scholar 

  149. S. Lichtenbaum. The period-index problem for elliptic curves. Amer. J. Math., 90:1209–1223, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  150. C.-E. Lind. Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins. Thesis, University of Uppsala,, 1940:97, 1940.

    MathSciNet  MATH  Google Scholar 

  151. J. Liouville. Sur des classes très-étendues de quantités dont la irrationalles algébriques. C. R. Acad. Paris, 18:883–885 and 910–911, 1844.

    Google Scholar 

  152. E. Lutz. Sur l’equation y 2 = x 3axb dans les corps p-adic. J. Reine Angew. Math., 177:237–247, 1937.

    MathSciNet  Google Scholar 

  153. K. Mahler. On the lattice points on curves of genus 1. Proc. London Math. Soc. (3), 39:431–466, 1935.

    Article  MathSciNet  MATH  Google Scholar 

  154. J. I. Manin. The Hasse-Witt matrix of an algebraic curve. Izv. Akad. Nauk SSSR Ser. Mat., 25:153–172, 1961.

    MathSciNet  Google Scholar 

  155. J. I. Manin. The p-torsion of elliptic curves is uniformly bounded. Izv. Akad. Nauk SSSR Ser. Mat., 33:459–465, 1969.

    MathSciNet  Google Scholar 

  156. J. I. Manin. Cyclotomic fields and modular curves. Uspehi Mat. Nauk, 26(6(162)):7–71, 1971. English translation: Russian Math. Surveys 26 (1971), no. 6, 7–78.

    Google Scholar 

  157. R. C. Mason. The hyperelliptic equation over function fields. Math. Proc. Cambridge Philos. Soc., 93(2):219–230, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  158. R. C. Mason. Norm form equations. I. J. Number Theory, 22(2):190–207, 1986.

    Google Scholar 

  159. D. Masser. Elliptic functions and transcendence. Springer-Verlag, Berlin, 1975. Lecture Notes in Mathematics, Vol. 437.

    Google Scholar 

  160. D. Masser and G. Wüstholz. Isogeny estimates for abelian varieties, and finiteness theorems. Ann. of Math. (2), 137(3):459–472, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  161. D. W. Masser. Specializations of finitely generated subgroups of abelian varieties. Trans. Amer. Math. Soc., 311(1):413–424, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  162. D. W. Masser and G. Wüstholz. Fields of large transcendence degree generated by values of elliptic functions. Invent. Math., 72(3):407–464, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  163. D. W. Masser and G. Wüstholz. Estimating isogenies on elliptic curves. Invent. Math., 100(1):1–24, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  164. H. Matsumura. Commutative algebra, volume 56 of Mathematics Lecture Note Series. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., second edition, 1980.

    Google Scholar 

  165. B. Mazur. Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math., (47):33–186 (1978), 1977.

    Google Scholar 

  166. B. Mazur. Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math., 44(2):129–162, 1978.

    Google Scholar 

  167. H. McKean and V. Moll. Elliptic curves. Cambridge University Press, Cambridge, 1997. Function theory, geometry, arithmetic.

    Google Scholar 

  168. A. J. Menezes, T. Okamoto, and S. A. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Trans. Inform. Theory, 39(5):1639–1646, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  169. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC Press Series on Discrete Mathematics and Its Applications. CRC Press, Boca Raton, FL, 1997.

    MATH  Google Scholar 

  170. L. Merel. Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math., 124(1-3):437–449, 1996.

    Article  MathSciNet  Google Scholar 

  171. J.-F. Mestre. Construction d’une courbe elliptique de rang ≥ 12. C. R. Acad. Sci. Paris Sér. I Math., 295(12):643–644, 1982.

    MathSciNet  MATH  Google Scholar 

  172. J.-F. Mestre. Courbes elliptiques et formules explicites. In Seminar on number theory, Paris 1981–82 (Paris, 1981/1982), volume 38 of Progr. Math., pages 179–187. Birkhäuser Boston, Boston, MA, 1983.

    Google Scholar 

  173. M. Mignotte. Quelques remarques sur l’approximation rationnelle des nombres algébriques. J. Reine Angew. Math., 268/269:341–347, 1974. Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, II.

    Google Scholar 

  174. S. D. Miller and R. Venkatesan. Spectral analysis of Pollard rho collisions. In Algorithmic number theory, volume 4076 of Lecture Notes in Comput. Sci., pages 573–581. Springer, Berlin, 2006.

    Google Scholar 

  175. S. D. Miller and R. Venkatesan. Non-degeneracy of Pollard rho collisions, 2008. arXiv:0808.0469.

    Google Scholar 

  176. V. S. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology—CRYPTO ’85 (Santa Barbara, Calif., 1985), volume 218 of Lecture Notes in Comput. Sci., pages 417–426. Springer, Berlin, 1986.

    Google Scholar 

  177. J. S. Milne. Arithmetic duality theorems, volume 1 of Perspectives in Mathematics. Academic Press Inc., Boston, MA, 1986.

    Google Scholar 

  178. J. S. Milne. Elliptic curves. BookSurge Publishers, Charleston, SC, 2006.

    MATH  Google Scholar 

  179. J. Milnor. On Lattès maps. ArXiv:math.DS/0402147, Stony Brook IMS Preprint #2004/01.

    Google Scholar 

  180. R. Miranda. Algebraic curves and Riemann surfaces, volume 5 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1995.

    MATH  Google Scholar 

  181. A. Miyaji, M. Nakabayashi, and S. Takano. Characterization of elliptic curve traces under FR-reduction. In Information security and cryptology—ICISC 2000 (Seoul), volume 2015 of Lecture Notes in Comput. Sci., pages 90–108. Springer, Berlin, 2001.

    Google Scholar 

  182. P. Monsky. Three constructions of rational points on Y 2 = X 3 ± NX. Math. Z., 209(3):445–462, 1992.

    Google Scholar 

  183. F. Morain. Building cyclic elliptic curves modulo large primes. In Advances in cryptology—EUROCRYPT ’91 (Brighton, 1991), volume 547 of Lecture Notes in Comput. Sci., pages 328–336. Springer, Berlin, 1991.

    Google Scholar 

  184. L. J. Mordell. The diophantine equation x 4 + my 4 = z 2. . Quart. J. Math. Oxford Ser. (2), 18:1–6, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  185. L. J. Mordell. Diophantine equations. Pure and Applied Mathematics, Vol. 30. Academic Press, London, 1969.

    Google Scholar 

  186. D. Mumford. Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, No. 5. Published for the Tata Institute of Fundamental Research, Bombay, 1970.

    Google Scholar 

  187. D. Mumford, J. Fogarty, and F. Kirwan. Geometric invariant theory, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)]. Springer-Verlag, Berlin, third edition, 1994.

    Google Scholar 

  188. K.-I. Nagao. Construction of high-rank elliptic curves. Kobe J. Math., 11(2):211–219, 1994.

    MathSciNet  MATH  Google Scholar 

  189. K.-I. Nagao. \(\mathbb{Q}(T)\)-rank of elliptic curves and certain limit coming from the local points. Manuscripta Math., 92(1):13–32, 1997. With an appendix by Nobuhiko Ishida, Tsuneo Ishikawa and the author.

    Google Scholar 

  190. T. Nagell. Solution de quelque problèmes dans la théorie arithmétique des cubiques planes du premier genre. Wid. Akad. Skrifter Oslo I, 1935. Nr. 1.

    Google Scholar 

  191. NBS–DSS. Digital Signature Standard (DSS). FIPS Publication 186-2, National Bureau of Standards, 2000. http://csrc.nist.gov/publications/ PubsFIPS.html .

  192. A. Néron. Problèmes arithmétiques et géométriques rattachés à la notion de rang d’une courbe algébrique dans un corps. Bull. Soc. Math. France, 80:101–166, 1952.

    MathSciNet  MATH  Google Scholar 

  193. A. Néron. Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Inst. Hautes Études Sci. Publ.Math. No., 21:128, 1964.

    MATH  Google Scholar 

  194. A. Néron. Quasi-fonctions et hauteurs sur les variétés abéliennes. Ann. of Math. (2), 82:249–331, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  195. O. Neumann. Elliptische Kurven mit vorgeschriebenem Reduktionsverhalten. I. Math. Nachr., 49:107–123, 1971.

    Google Scholar 

  196. J. Oesterlé. Nouvelles approches du “théorème” de Fermat. Astérisque, (161-162):Exp. No. 694, 4, 165–186 (1989), 1988. Séminaire Bourbaki, Vol. 1987/88.

    Google Scholar 

  197. A. Ogg. Modular forms and Dirichlet series. W. A. Benjamin, Inc., New York-Amsterdam, 1969.

    MATH  Google Scholar 

  198. A. P. Ogg. Abelian curves of 2-power conductor. Proc. Cambridge Philos. Soc., 62:143–148, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  199. A. P. Ogg. Abelian curves of small conductor. J. Reine Angew. Math., 226:204–215, 1967.

    MathSciNet  MATH  Google Scholar 

  200. A. P. Ogg. Elliptic curves and wild ramification. Amer. J. Math., 89:1–21, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  201. L. D. Olson. Torsion points on elliptic curves with given j-invariant. Manuscripta Math., 16(2):145–150, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  202. PARI/GP, 2005. http://pari.math.u-bordeaux.fr/.

  203. A. N. Paršin. Algebraic curves over function fields. I. Izv. Akad. Nauk SSSR Ser. Mat., 32:1191–1219, 1968.

    Google Scholar 

  204. R. G. E. Pinch. Elliptic curves with good reduction away from 2. Math. Proc. Cambridge Philos. Soc., 96(1):25–38, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  205. S. C. Pohlig and M. E. Hellman. An improved algorithm for computing logarithms over \(\mathop{\mathrm{GF}}\nolimits (p)\) and its cryptographic significance. IEEE Trans. Information Theory, IT-24(1):106–110, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  206. J. M. Pollard. Monte Carlo methods for index computation \((\mathop{\mathrm{mod}}\nolimits \ p)\). Math. Comp., 32(143):918–924, 1978.

    MathSciNet  MATH  Google Scholar 

  207. H. Reichardt. Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen. J. Reine Angew. Math., 184:12–18, 1942.

    MathSciNet  MATH  Google Scholar 

  208. K. A. Ribet. On modular representations of \(\mathop{\mathrm{Gal}}\nolimits (\overline{\mathbf{Q}}/\mathbf{Q})\) arising from modular forms. Invent. Math., 100(2):431–476, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  209. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Comm. ACM, 21(2):120–126, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  210. A. Robert. Elliptic curves. Springer-Verlag, Berlin, 1973. Notes from postgraduate lectures given in Lausanne 1971/72, Lecture Notes in Mathematics, Vol. 326.

    Google Scholar 

  211. D. E. Rohrlich. On L-functions of elliptic curves and anticyclotomic towers. Invent. Math., 75(3):383–408, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  212. P. Roquette. Analytic theory of elliptic functions over local fields. Hamburger Mathematische Einzelschriften (N.F.), Heft 1. Vandenhoeck & Ruprecht, Göttingen, 1970.

    Google Scholar 

  213. M. Rosen and J. H. Silverman. On the rank of an elliptic surface. Invent. Math., 133(1):43–67, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  214. K. Rubin. Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer. Invent. Math., 64(3):455–470, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  215. K. Rubin. Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication. Invent. Math., 89(3):527–559, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  216. K. Rubin. The “main conjectures” of Iwasawa theory for imaginary quadratic fields. Invent. Math., 103(1):25–68, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  217. T. Saito. Conductor, discriminant, and the Noether formula of arithmetic surfaces. Duke Math. J., 57(1):151–173, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  218. T. Satoh and K. Araki. Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves. Comment. Math. Univ. St. Paul., 47(1):81–92, 1998.

    MathSciNet  MATH  Google Scholar 

  219. E. F. Schaefer and M. Stoll. How to do a p-descent on an elliptic curve. Trans. Amer. Math. Soc., 356(3):1209–1231 (electronic), 2004.

    Google Scholar 

  220. S. H. Schanuel. Heights in number fields. Bull. Soc. Math. France, 107(4):433–449, 1979.

    MathSciNet  MATH  Google Scholar 

  221. W. M. Schmidt. Diophantine approximation, volume 785 of Lecture Notes in Mathematics. Springer, Berlin, 1980.

    Google Scholar 

  222. S. Schmitt and H. G. Zimmer. Elliptic curves, volume 31 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 2003. A computational approach, With an appendix by Attila Pethő.

    Google Scholar 

  223. R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp., 44(170):483–494, 1985.

    Google Scholar 

  224. R. Schoof. Counting points on elliptic curves over finite fields. J. Théor. Nombres Bordeaux, 7(1):219–254, 1995. Les Dix-huitièmes Journées Arithmétiques (Bordeaux, 1993).

    Google Scholar 

  225. E. S. Selmer. The Diophantine equation ax 3 + by 3 + cz 3 = 0. Acta Math., 85:203–362 (1 plate), 1951.

    Google Scholar 

  226. E. S. Selmer. A conjecture concerning rational points on cubic curves. Math. Scand., 2:49–54, 1954.

    MathSciNet  MATH  Google Scholar 

  227. E. S. Selmer. The diophantine equation ax 3 + by 3 + cz 3 = 0. Completion of the tables. Acta Math., 92:191–197, 1954.

    Google Scholar 

  228. I. A. Semaev. Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p. Math. Comp., 67(221):353–356, 1998.

    Google Scholar 

  229. J.-P. Serre. Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier, Grenoble, 6:1–42, 1955–1956.

    Google Scholar 

  230. J.-P. Serre. Complex multiplication. In Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), pages 292–296. Thompson, Washington, D.C., 1967.

    Google Scholar 

  231. J.-P. Serre. Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math., 15(4):259–331, 1972.

    Google Scholar 

  232. J.-P. Serre. A course in arithmetic. Springer-Verlag, New York, 1973. Translated from the French, Graduate Texts in Mathematics, No. 7.

    Google Scholar 

  233. J.-P. Serre. Local fields, volume 67 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1979. Translated from the French by Marvin Jay Greenberg.

    Google Scholar 

  234. J.-P. Serre. Quelques applications du théorème de densité de Chebotarev. Inst. Hautes Études Sci. Publ. Math., (54):323–401, 1981.

    Article  MATH  Google Scholar 

  235. J.-P. Serre. Sur les représentations modulaires de degré 2 de \(\mathop{\mathrm{Gal}}\nolimits (\overline{\mathbf{Q}}/\mathbf{Q})\). Duke Math. J., 54(1):179–230, 1987.

    Article  MathSciNet  Google Scholar 

  236. J.-P. Serre. Lectures on the Mordell-Weil theorem. Aspects of Mathematics. Friedr. Vieweg & Sohn, Braunschweig, third edition, 1997. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt, With a foreword by Brown and Serre.

    Google Scholar 

  237. J.-P. Serre. Abelian l-adic representations and elliptic curves, volume 7 of Research Notes in Mathematics. A K Peters Ltd., Wellesley, MA, 1998. With the collaboration of Willem Kuyk and John Labute, Revised reprint of the 1968 original.

    Google Scholar 

  238. J.-P. Serre. Galois cohomology. Springer Monographs in Mathematics. Springer-Verlag, Berlin, english edition, 2002. Translated from the French by Patrick Ion and revised by the author.

    Google Scholar 

  239. J.-P. Serre and J. Tate. Good reduction of abelian varieties. Ann. of Math. (2), 88:492–517, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  240. B. Setzer. Elliptic curves of prime conductor. J. London Math. Soc. (2), 10:367–378, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  241. B. Setzer. Elliptic curves over complex quadratic fields. Pacific J. Math., 74(1):235–250, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  242. I. R. Shafarevich. Algebraic number fields. In Proc. Int. Cong. (Stockholm 1962), pages 25–39. American Mathematical Society, Providence, R.I., 1963. Amer. Math. Soc. Transl., Series 2, Vol. 31.

    Google Scholar 

  243. I. R. Shafarevich. Basic algebraic geometry. Springer-Verlag, Berlin, study edition, 1977. Translated from the Russian by K. A. Hirsch, Revised printing of Grundlehren der mathematischen Wissenschaften, Vol. 213, 1974.

    Google Scholar 

  244. I. R. Shafarevich and J. Tate. The rank of elliptic curves. In Amer. Math. Soc. Transl., volume 8, pages 917–920. Amer. Math. Soc., 1967.

    Google Scholar 

  245. A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology (Santa Barbara, Calif., 1984), volume 196 of Lecture Notes in Comput. Sci., pages 47–53. Springer, Berlin, 1985.

    Google Scholar 

  246. G. Shimura. Correspondances modulaires et les fonctions ζ de courbes algébriques. J. Math. Soc. Japan, 10:1–28, 1958.

    Article  MathSciNet  MATH  Google Scholar 

  247. G. Shimura. On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields. Nagoya Math. J., 43:199–208, 1971.

    MathSciNet  MATH  Google Scholar 

  248. G. Shimura. On the zeta-function of an abelian variety with complex multiplication. Ann. of Math. (2), 94:504–533, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  249. G. Shimura. Introduction to the arithmetic theory of automorphic functions, volume 11 of Publications of the Mathematical Society of Japan. Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original, Kano Memorial Lectures, 1.

    Google Scholar 

  250. G. Shimura and Y. Taniyama. Complex multiplication of abelian varieties and its applications to number theory, volume 6 of Publications of the Mathematical Society of Japan. The Mathematical Society of Japan, Tokyo, 1961.

    Google Scholar 

  251. T. Shioda. An explicit algorithm for computing the Picard number of certain algebraic surfaces. Amer. J. Math., 108(2):415–432, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  252. R. Shipsey. Elliptic divisibility sequences. PhD thesis, Goldsmith’s College (University of London), 2000.

    Google Scholar 

  253. V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances in cryptology—EUROCRYPT ’97 (Konstanz), volume 1233 of Lecture Notes in Comput. Sci., pages 256–266. Springer, Berlin, 1997. updated version at www.shoup.net/papers/dlbounds1.pdf.

  254. J. H. Silverman. Lower bound for the canonical height on elliptic curves. Duke Math. J., 48(3):633–648, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  255. J. H. Silverman. The Néron–Tate height on elliptic curves. PhD thesis, Harvard University, 1981.

    Google Scholar 

  256. J. H. Silverman. Heights and the specialization map for families of abelian varieties. J. Reine Angew. Math., 342:197–211, 1983.

    MathSciNet  MATH  Google Scholar 

  257. J. H. Silverman. Integer points on curves of genus 1. J. London Math. Soc. (2), 28(1):1–7, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  258. J. H. Silverman. The S-unit equation over function fields. Math. Proc. Cambridge Philos. Soc., 95(1):3–4, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  259. J. H. Silverman. Weierstrass equations and the minimal discriminant of an elliptic curve. Mathematika, 31(2):245–251 (1985), 1984.

    Article  MathSciNet  MATH  Google Scholar 

  260. J. H. Silverman. Divisibility of the specialization map for families of elliptic curves. Amer. J. Math., 107(3):555–565, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  261. J. H. Silverman. Arithmetic distance functions and height functions in Diophantine geometry. Math. Ann., 279(2):193–216, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  262. J. H. Silverman. A quantitative version of Siegel’s theorem: integral points on elliptic curves and Catalan curves. J. Reine Angew. Math., 378:60–100, 1987.

    MathSciNet  MATH  Google Scholar 

  263. J. H. Silverman. Computing heights on elliptic curves. Math. Comp., 51(183):339–358, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  264. J. H. Silverman. Wieferich’s criterion and the abc-conjecture. J. Number Theory, 30(2):226–237, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  265. J. H. Silverman. The difference between the Weil height and the canonical height on elliptic curves. Math. Comp., 55(192):723–743, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  266. J. H. Silverman. Advanced topics in the arithmetic of elliptic curves, volume 151 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1994.

    MATH  Google Scholar 

  267. J. H. Silverman. The arithmetic of dynamical systems, volume 241 of Graduate Texts in Mathematics. Springer, New York, 2007.

    MATH  Google Scholar 

  268. N. P. Smart. S-integral points on elliptic curves. Math. Proc. Cambridge Philos. Soc., 116(3):391–399, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  269. N. P. Smart. The discrete logarithm problem on elliptic curves of trace one. J. Cryptology, 12(3):193–196, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  270. K. Stange. The Tate pairing via elliptic nets. In Pairing Based Cryptography, Lecture Notes in Comput. Sci. Springer, 2007.

    Google Scholar 

  271. K. Stange. Elliptic Nets and Elliptic Curves. PhD thesis, Brown University, 2008.

    Google Scholar 

  272. K. Stange. Elliptic nets and elliptic curves, 2008. arXiv:0710.1316v2.

    Google Scholar 

  273. H. M. Stark. Effective estimates of solutions of some Diophantine equations. Acta Arith., 24:251–259, 1973.

    MathSciNet  MATH  Google Scholar 

  274. W. Stein. The Modular Forms Database. http://modular.fas.harvard. edu/Tables .

  275. W. Stein. Sage Mathematics Software, 2007. http://www.sagemath.org.

  276. N. M. Stephens. The Diophantine equation X 3 + Y 3 = DZ 3 and the conjectures of Birch and Swinnerton-Dyer. J. Reine Angew. Math., 231:121–162, 1968.

    MathSciNet  MATH  Google Scholar 

  277. D. R. Stinson. Cryptography: Theory and Practice. CRC Press Series on Discrete Mathematics and Its Applications. Chapman & Hall/CRC, Boca Raton, FL, 2002.

    MATH  Google Scholar 

  278. W. W. Stothers. Polynomial identities and Hauptmoduln. Quart. J. Math. Oxford Ser. (2), 32(127):349–370, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  279. R. J. Stroeker and N. Tzanakis. Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms. Acta Arith., 67(2):177–196, 1994.

    MathSciNet  MATH  Google Scholar 

  280. J. Tate. Letter to J.-P. Serre, 1968.

    Google Scholar 

  281. J. Tate. Duality theorems in Galois cohomology over number fields. In Proc. Internat. Congr. Mathematicians (Stockholm, 1962), pages 288–295. Inst. Mittag-Leffler, Djursholm, 1963.

    Google Scholar 

  282. J. Tate. Endomorphisms of abelian varieties over finite fields. Invent. Math., 2:134–144, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  283. J. Tate. Algorithm for determining the type of a singular fiber in an elliptic pencil. In Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pages 33–52. Lecture Notes in Math., Vol. 476. Springer, Berlin, 1975.

    Google Scholar 

  284. J. Tate. Variation of the canonical height of a point depending on a parameter. Amer. J. Math., 105(1):287–294, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  285. J. Tate. A review of non-Archimedean elliptic functions. In Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993), Ser. Number Theory, I, pages 162–184. Int. Press, Cambridge, MA, 1995.

    Google Scholar 

  286. J. Tate. WC-groups over \(\mathfrak{p}\)-adic fields. In Séminaire Bourbaki, Vol. 4 (1957/58), pages Exp. No. 156, 265–277. Soc. Math. France, Paris, 1995.

    Google Scholar 

  287. J. T. Tate. Algebraic cycles and poles of zeta functions. In Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), pages 93–110. Harper & Row, New York, 1965.

    Google Scholar 

  288. J. T. Tate. Global class field theory. In Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), pages 162–203. Thompson, Washington, D.C., 1967.

    Google Scholar 

  289. J. T. Tate. The arithmetic of elliptic curves. Invent. Math., 23:179–206, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  290. R. Taylor. Automorphy for some l-adic lifts of automorphic mod l representations. II. Inst. Hautes Études Sci. Publ. Math. submitted.

    Google Scholar 

  291. R. Taylor and A. Wiles. Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2), 141(3):553–572, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  292. E. Teske. A space efficient algorithm for group structure computation. Math. Comp., 67(224):1637–1663, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  293. E. Teske. Speeding up Pollard’s rho method for computing discrete logarithms. In Algorithmic Number Theory (Portland, OR, 1998), volume 1423 of Lecture Notes in Comput. Sci., pages 541–554. Springer, Berlin, 1998.

    MATH  Google Scholar 

  294. E. Teske. Square-root algorithms for the discrete logarithm problem (a survey). In Public-Key Cryptography and Computational Number Theory (Warsaw, 2000), pages 283–301. de Gruyter, Berlin, 2001.

    Google Scholar 

  295. D. Ulmer. Elliptic curves with large rank over function fields. Ann. of Math. (2), 155(1):295–315, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  296. B. L. van der Waerden. Algebra. Vols. I and II. Springer-Verlag, New York, 1991. Based in part on lectures by E. Artin and E. Noether, Translated from the seventh German edition by Fred Blum and John R. Schulenberger.

    Google Scholar 

  297. J. Vélu. Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris Sér. A-B, 273:A238–A241, 1971.

    Google Scholar 

  298. P. Vojta. A higher-dimensional Mordell conjecture. In Arithmetic geometry (Storrs, Conn., 1984), pages 341–353. Springer, New York, 1986.

    Google Scholar 

  299. P. Vojta. Siegel’s theorem in the compact case. Ann. of Math. (2), 133(3):509–548, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  300. J. F. Voloch. Diagonal equations over function fields. Bol. Soc. Brasil. Mat., 16(2):29–39, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  301. P. M. Voutier. An upper bound for the size of integral solutions to Y m = f(X). J. Number Theory, 53(2):247–271, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  302. R. J. Walker. Algebraic curves. Springer-Verlag, New York, 1978. Reprint of the 1950 edition.

    Google Scholar 

  303. M. Ward. Memoir on elliptic divisibility sequences. Amer. J. Math., 70:31–74, 1948.

    Article  MathSciNet  MATH  Google Scholar 

  304. L. C. Washington. Elliptic curves. Discrete Mathematics and Its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, second edition, 2008. Number theory and cryptography.

    Google Scholar 

  305. A. Weil. Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc., 55:497–508, 1949.

    Article  MathSciNet  MATH  Google Scholar 

  306. A. Weil. Jacobi sums as “Grössencharaktere.” Trans. Amer. Math. Soc., 73:487–495, 1952.

    MathSciNet  MATH  Google Scholar 

  307. A. Weil. On algebraic groups and homogeneous spaces. Amer. J. Math., 77:493–512, 1955.

    Article  MathSciNet  MATH  Google Scholar 

  308. A. Weil. Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann., 168:149–156, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  309. A. Weil. Dirichlet Series and Automorphic Forms, volume 189 of Lecture Notes in Mathematics. Springer-Verlag, 1971.

    Google Scholar 

  310. E. T. Whittaker and G. N. Watson. A course of modern analysis. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1996. Reprint of the fourth (1927) edition.

    Google Scholar 

  311. A. Wiles. Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2), 141(3):443–551, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  312. A. Wiles. The Birch and Swinnerton-Dyer conjecture. In The millennium prize problems, pages 31–41. Clay Math. Inst., Cambridge, MA, 2006.

    Google Scholar 

  313. G. Wüstholz. Recent progress in transcendence theory. In Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), volume 1068 of Lecture Notes in Math., pages 280–296. Springer, Berlin, 1984.

    MATH  Google Scholar 

  314. G. Wüstholz. Multiplicity estimates on group varieties. Ann. of Math. (2), 129(3):471–500, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  315. D. Zagier. Large integral points on elliptic curves. Math. Comp., 48(177):425–436, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  316. H. G. Zimmer. On the difference of the Weil height and the Néron-Tate height. Math. Z., 147(1):35–51, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  317. K. Zsigmondy. Zur Theorie der Potenzreste. Monatsh. Math., 3:265–284, 1892.

    Article  MathSciNet  Google Scholar 

  318. P. Deligne. La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math., (43):273–307, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Silverman .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Silverman, J.H. (2009). The Formal Group of an Elliptic Curve. In: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol 106. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09494-6_4

Download citation

Publish with us

Policies and ethics