Skip to main content

DNA-Mediated Assembly of Metal Nanoparticles: Fabrication, Structural Features, and Electrical Properties

  • Chapter
Nanobioelectronics - for Electronics, Biology, and Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alivisatos, A.P., Johnsson, K.P., Peng, X., Wilson, T.E., Loweth, C.J., Bruchez Jr., M.P. and Schultz, P.G. (1996). Organization of ‘nanocrystal molecules’ using DNA. Nature 382(6592), 609–611.

    Article  CAS  Google Scholar 

  • Bae, A.H., Numata, M., Hasegawa, T., Li, C., Kaneko, K., Sakurai, K. and Shinkai, S. (2005). 1D Arrangement of Au nanoparticles by the helical structure of schizophyllan: a unique encounter of a natural product with inorganic compounds. Angew. Chem. Int. Ed. 44(13), 2030–2033. Angew. Chem. 117(13), 2066–2069.

    Article  CAS  Google Scholar 

  • Braun, E., Eichen, Y., Sivan, U. and Ben-Yoseph, G. (1998). DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391(6669), 775–778.

    Article  CAS  Google Scholar 

  • Braun, G., Inagaki, K., Estabrook, R.A., Wood, D.K., Levy, E., Cleland, A.N., Strouse, G.F. and Reich, N.O. (2005). Gold nanoparticle decoration of DNA on silicon. Langmuir 21(23), 10699–10701.

    Article  CAS  Google Scholar 

  • Burley, G.A., Gierlich, J., Mofid, M.R., Nir, H., Tal, S., Eichen, Y. and Carell, T. (2006). Directed DNA metallization. J. Am. Chem. Soc. 128(5), 1398–1399.

    Article  CAS  Google Scholar 

  • Chen, Y., Aveyard, J. and Wilson, R. (2004). Gold and silver nanoparticles functionalized with known numbers of oligonucleotides per particle for DNA detection. Chem. Comm. (24), 2804–2805.

    Google Scholar 

  • Cobbe, S., Connolly, S., Ryan, D., Nagle, L., Eritja, R. and Fitzmaurice, D. (2003). DNA-controlled assembly of protein-modified gold nanocrystals. J. Phys. Chem. B 107(2), 470–477.

    Article  CAS  Google Scholar 

  • Daniel, M.-C. and Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size—related properties, and applications toward biology, catalysis and nanotechnology. Chem. Rev. 104(1), 293–346.

    Article  CAS  Google Scholar 

  • Demers, L.M., Mirkin, C.A., Mucic, R.C., Reynolds, R.A., Letsinger, R.L., Elghanian, R. and Viswanadham, G. (2000). A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal. Chem. 72(22), 5535–5541.

    Article  CAS  Google Scholar 

  • Deng, Z., Tian, Y., Lee, S., Ribbe, A.E. and Mao, C. (2005). DNA-encoded self-assembly of gold nanopar-ticles into one-dimensional arrays. Angew. Chem. Int. Ed. 44(23), 3582–3585. Angew. Chem. 117(23), 3648–3651.

    Article  CAS  Google Scholar 

  • Dujardin, E., Hsin, L.B., Wang, C.R.C. and Mann, S. (2001). DNA-driven self-assembly of gold nanorods. Chem. Comm. (14), 1264–1265.

    Google Scholar 

  • Feldheim, D.L. and Foss, C.A. (2002). Metal Nanoparticles: Synthesis, Characterization, and Applications. Marcel Dekker, New York.

    Google Scholar 

  • Fitzmaurice, D. and Connolly, S. (1999). Programmed assembly of gold nanocrystals in aqueous solution. Adv. Mater. 11(14), 1202–1205.

    Article  Google Scholar 

  • Ford, W.E., Harnack, O., Yasuda, A. and Wessels, J.M. (2001). Platinated DNA as precursors to templated chains of metal nanoparticles. Adv. Mater. 13(23), 1793–1797.

    Article  CAS  Google Scholar 

  • Gearheart, L.A., Ploehn, H.J. and Murphy, C.J. (2001). Oligonucleotide adsorption to gold nanoparticles: a surface-enhanced Raman spectroscopy study of intrinsically bent DNA. J. Phys. Chem. B 105(50), 12609–12615.

    Article  CAS  Google Scholar 

  • Halperin, W.P. (1986). Quantum size effects in metal particles. Rev. Mod. Phys. 58(3), 533–606.

    Article  CAS  Google Scholar 

  • Hazarika, P., Giorgi, T., Reibner, M., Ceyhan, B. and Niemeyer, C.M. (2004). In: C.M. Niemeyer (Eds.), Bioconjugation Protocols: Strategies and Methods, Humana Press, Totowa New York, pp. 295–304.

    Chapter  Google Scholar 

  • Huang, Y., Chiang, C.-Y., Lee, S.K., Gao, Y., Hu, E.L., De Yoreo, J. and Belcher, A.M. (2005). Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett. 5(7), 1429–1434.

    Article  CAS  Google Scholar 

  • Jamieson, E.R. and Lippard, S.J. (1999). Structure, recognition, and processing of cisplatin-DNA adducts. Chem. Rev. 99(9), 2467–2498.

    Article  CAS  Google Scholar 

  • Jin, R., Wu, G., Li, Z., Mirkin, C.A. and Schatz, G.C. (2003). What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 125(6), 1643–1654.

    Article  CAS  Google Scholar 

  • de Jongh, L.J. (1994). Physics and Chemistry of Metal Cluster Compounds, Model Systems for Small Metal Particles, Series: Physics and Chemistry of Materials with Low-Dimensional Structures, Vol. 18, Springer, Heidelberg, New York.

    Book  Google Scholar 

  • Keren, K., Berman, R.S., Buchstab, E., Sivan, U. and Braun, E. (2003). DNA-templated carbon nanotube field-effect transistor. Science 302(5649), 1380–1382.

    Article  CAS  Google Scholar 

  • Komiyama, M. and Hirai, H. (1983), Colloidal rhodium dispersions protected by cyclodextrins. Bull. Chem. Soc. Jpn. 56(9), 2833–2834.

    Article  CAS  Google Scholar 

  • Koplin, E., Niemeyer, C.M. and Simon, U. (2006). Formation of electrically conducting DNA-assembled gold nanoparticle monolayers. J. Mater. Chem. 16(14), 1338–1344.

    Article  CAS  Google Scholar 

  • Koyfman, A.Y., Braun, G., Magonov, S., Chworos, A., Reich, N.O. and Jaeger, L. (2005). Controlled spacing of cationic gold nanoparticles by nanocrown RNA. J. Am. Chem. Soc. 127(34), 11886–11887.

    Article  CAS  Google Scholar 

  • Kretschmer, R. and Fritzsche, W. (2004), Pearl chain formation of nanoparticles in microelectrode gaps by dielectrophoresis. Langmuir 20(26), 11797–11801.

    Article  CAS  Google Scholar 

  • Le, J.D., Pinto, Y., Seeman, N.C., Musier-Forsyth, K., Taton, T.A. and Kiehl, R.A. (2004). DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 4(12), 2343–2347.

    Article  CAS  Google Scholar 

  • Letsinger, R.L., Elghanian, R., Viswanadham, G. and Mirkin, C.A. (2000). Use of a steroid cyclic disulfide anchor in constructing gold nanoparticle-oligonucleotide conjugates. Bioconjug. Chem. 11(2), 289–291.

    Article  Google Scholar 

  • Li, H., Park, S.H., Reif, J.H., LaBean, T.H. and Yan, H. (2004). DNA-templated self-assembly of protein and nanoparticle linear arrays. J. Am. Chem. Soc. 126(2), 418–419.

    Article  CAS  Google Scholar 

  • Li, U. and Mirkin, C.A. (2005). G-quartet-induced nanoparticle assembly. J. Am. Chem. Soc. 127(33), 11568–11569.

    Article  CAS  Google Scholar 

  • Li, Z., Jin, R., Mirkin, C.A. and Letsinger, R.L. (2002). Multiple thiol-anchor capped DNA—gold nanopar-ticle conjugates. Nucleic Acids Res. 30(7), 1558–1562.

    Article  CAS  Google Scholar 

  • Liu, Y., Meyer-Zaika, W., Franzka, S., Schmid, G., Tsoli, M. and Kuhn, H. (2003). Gold-cluster degradation by the transition of B-DNA into A-DNA and the formation of nanowires. Angew. Chem. Int. Ed. 42(25), 2853–2857. Angew. Chem. 115(25), 2959–2963.

    Article  CAS  Google Scholar 

  • Long, H. and Schatz, G. (2003). In: U. Simon, G. Schmid, S. Hong, S.J. Stranick and S.M. Arrivo (Eds.), Bioinspired Nanoscale Hybrid Systems, Symposium Proceedings Vol. 735, Materials Research Society, Warrendale Pennsylvania, pp. 143–152.

    Google Scholar 

  • Loweth, C.J., Caldwell, W.B., Peng, X., Alivisatos, A.P. and Schultz., P.G. (1999). DNA-based assembly of gold nanocrystals. Angew. Chem. Int. Ed. 38(12), 1808–1812. Angew. Chem. 111(12), 1925–1929.

    Article  CAS  Google Scholar 

  • Mbindyo, J.K.N., Reiss, B.D., Martin, B.R., Keating, C.D., Natan, M.J. and Mallouk, T.E. (2001). DNA-directed assembly of gold nanowires on complementary surfaces. Adv. Mater. 13(4), 249–254.

    Article  CAS  Google Scholar 

  • Mirkin, C.A. (2000). Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg. Chem. 39(11), 2258–2272.

    Article  CAS  Google Scholar 

  • Mirkin, C.A., Letsinger, R.L., Mucic, R.C. and Storhoff, J.J. (1996). A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592), 607–609.

    Article  CAS  Google Scholar 

  • Mitchell, G.P., Mirkin, C.A. and Letsinger, R.L. (1999). Programmed assembly of DNA-functionalized quantum dots. J. Am. Chem. Soc. 121(35), 8122–8123.

    Article  CAS  Google Scholar 

  • Moiseev, I., Vargaftik, M.N., Strom-nova, T.A., Gekhman, A.E., Tsirkov, G.A. and Makhlina, A.M. (1996). Catalysis with a palladium giant cluster: phenol oxidative carbonylation to diphenyl carbonate conjugated with reductive nitrobenzene conversion. J. Mol. Cat. A 108(2), 77–85.

    Article  CAS  Google Scholar 

  • Mucic, R.C., Storhoff, J.J., Mirkin, D.A. and Letsinger, R.L. (1998). DNA-directed synthesis of binary nanoparticle network materials. J. Am. Chem. Soc. 120(48), 12674–12675.

    Article  CAS  Google Scholar 

  • Niemeyer, C.M. (2001a). Bioorganic applications of semisynthetic DNA-protein conjugates. Chem. Eur. J. 7(14), 3188–3195.

    Article  CAS  Google Scholar 

  • Niemeyer, C.M (2001b). Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew. Chem. Int. Ed. 40(22), 4128–4158. Angew. Chem. 113(22), 4254–4287.

    Article  CAS  Google Scholar 

  • Niemeyer, C.M., Bürger, W. and Peplies, J. (1998). Covalent DNA-streptavidin conjugates as building blocks for novel biometallic nanostructures. Angew. Chem. Int. Ed. 37(16), 2265–2268. Angew. Chem. 110(16), 2391–2395.

    Article  CAS  Google Scholar 

  • Niemeyer, C.M, Ceyhan, B. and Hazarika, P. (2003a). Oligofunctional DNA-gold nanoparticle conjugates. Angew. Chem. Int. Ed. 42(46), 5766–5770. Angew. Chem. 115(46), 5944–5948.

    Article  CAS  Google Scholar 

  • Niemeyer, C.M., Ceyhan, B., Noyong, M. and Simon, U. (2003b). Bifunctional DNA—gold nanoparticle conjugates as building blocks for the self-assembly of cross-linked particle layers. Biochem. Biophys. Res. Comm. 311(4), 995–999.

    Article  CAS  Google Scholar 

  • Niemeyer, C.M. and Mirkin, C.A. (2004). Nano-Biotechnology: Concepts, Methods and Applications. Wiley-VCH, Weinheim.

    Book  Google Scholar 

  • Noyong, M., Gloddek, K. and Simon, U. (2003). In: U. Simon, G. Schmid, S. Hong, S.J. Stranick and S.M. Arrivo (Eds.), Bioinspired Nanoscale Hybrid Systems, Symposium Proceedings Vol. 735, Materials Research Society, Warrendale Pennsylvania, pp. 153–158.

    Google Scholar 

  • Ongaro, A., Griffin, F., Beecher, P., Nagle, L., Iacopino, D., Quinn, A., Redmond, G. and Fitzmaurice, D. (2005). DNA-templated assembly of conducting gold nanowires between gold electrodes on a silicon oxide surface. Chem. Mater. 17(8), 1959.

    Article  CAS  Google Scholar 

  • Ongaro, A., Griffin, F., Nagle, L., Iacopino, D., Eritja, R. and Fitzmaurice, D. (2004). DNA-templated assembly of a protein-functionalized nanogap electrode, Adv. Mater. 16(20), 1799–1803.

    Article  CAS  Google Scholar 

  • Parak, W.J., Pellegrino, T., Micheel, C.M., Gerion, D., Williams, S.C. and Alivisatos, A. P. (2003). Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis. Nano Lett. 3(1), 33–36.

    Article  CAS  Google Scholar 

  • Park, S.-J., Lazarides, A.A., Mirkin, C.A., Brazis, P.W., Kannewurf, C.R. and Letsinger, R.L. (2000). The electrical properties of gold nanoparticle assemblies linked by DNA. Angew. Chem. Int. Ed. 39(21), 3845–3848. Angew. Chem. 112(21), 4003–4006.

    Article  CAS  Google Scholar 

  • Park, S.J., Taton, T.A. and Mirkin, C.A. (2002). Array-based electrical detection of DNA with nanoparticle probes. Science 295(5559), 1503–1506.

    CAS  Google Scholar 

  • Reetz, M.T. and Helbig, W. (1994). Size-selective synthesis of nanostructured transition metal clusters. J. Am. Chem. Soc. 116(16), 7401–7402.

    Article  CAS  Google Scholar 

  • Remacle, F. and Levine, R.D. (2001). Quantum dots as chemical building blocks: elementary theoretical considerations. Chem. Phys. Chem. 2(1), 20–36.

    Article  CAS  Google Scholar 

  • Richards, R., Boennemann, H., Hormes, J. and Leuschner, C. (2005). In: C.S.S.R. Kumar and J. Hormes (Eds.), Nanofabrication Towards Biomedical Applications. Wiley-VCH, Weinheim, pp. 3–32.

    Google Scholar 

  • Richter, J., Mertig, M., Pompe, W., Mönch, I. and Schackert, H.K. (2001). Construction of highly conductive nanowires on a DNA template. Appl. Phys. Lett. 78(4), 536–538.

    Article  CAS  Google Scholar 

  • Rosi, N.L. and Mirkin, C.A. (2005). Nanostructures in biodiagnostics. Chem. Rev. 105(4), 1547–1562.

    Article  CAS  Google Scholar 

  • Schmid, G. (2004). Nanoparticles: From Theory to Applications. Wiley-VCH, Weinheim.

    Google Scholar 

  • Schmid, G., Boese, R., Pfeil, R., Bandermann, F., Meyer, S., Calis, G.H.M. and van der Velden, J.W.A. (1981). Au55[P(C6H5)3]12Cl6—Ein Goldcluster ungewöhnlicher Gröβe. Chem. Ber. 114(11), 3634–3642.

    Article  CAS  Google Scholar 

  • Schmid, G. and Lehnert, A. (1989), The complexation of gold colloids. Angew. Chem. Int. Ed. 28(6), 780–781. Angew. Chem. 101(6), 773–774.

    Article  Google Scholar 

  • Schmid, G., Lehnert, A., Kreibig, U., Damczyk, Z.A. and Belouschek, P. (1990). Synthese und elekto-nenmikroskopische Untersuchung kontrolliert gewachsener, ligandstabilisierter Goldkolloide sowie theoretische Überlegungen zur Oberflächenbelegung durch Kolloide. Z. Naturforsch. 45b, 989–994.

    Google Scholar 

  • Schmid, G., Morun, B. and Malm, J.-O. (1989). Pt309Phen36*O30±10, a four-shell platinum cluster. Angew. Chem. Int. Ed. 28(6), 778–780. Angew. Chem. 101(6), 772–773.

    Article  Google Scholar 

  • Schmid, G., Pugin R., Sawitowski Th., Simon U. and Marler B. (1999). Transmission electron microscopic and small angle X-ray diffraction investigations of Au55(PPh3)12Cl6 microcrystals. Chem. Comm. (14), 1303–1304.

    Google Scholar 

  • Schön, G. and Simon, U. (1995). A fascinating new field in colloid science: small ligand- stabilized metal clusters and possible application in microelectronics. Coll. Polym. Sci. 273(2), 101–117.

    Article  Google Scholar 

  • Seidel, R., Ciacchi, L.C., Weigel, M., Pompe, W. and Mertig, M. (2004). Synthesis of platinum cluster chains on DNA templates: conditions for a template-controlled cluster growth. J. Phys. Chem. B 108(30), 10801–10811.

    Article  CAS  Google Scholar 

  • Sharma, J., Chhabra, R., Liu, Y., Ke, Y. and Yan, H. (2006). DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays (p). Angew. Chem. Int. Ed. 45(5), 730–735. Angew. Chem. 118(5), 744–749.

    Article  CAS  Google Scholar 

  • Shipway, A.N., Katz, E. and Willner, I. (2000). Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem. Phys. Chem. 1(1), 19–52.

    Google Scholar 

  • Simon, U. (1998). Charge transport in nanoparticle arrangements. Adv. Mater. 10(17), 1487–1492.

    Article  CAS  Google Scholar 

  • Spatz, J.P., Roescher, A. and Moeller, M. (1996). Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide) films—size and inter-particle distance control in monoparticulate films. Adv. Mater. 8(4), 337–340.

    Article  CAS  Google Scholar 

  • Spatz, J.P., Roescher, A., Sheiko, S., Krausch, G. and Moeller, M. (1995). Noble metal loaded block lonomers: micelle organization, adsorption of free chains and formation of thin films. Adv. Mater. 7(8), 731–735.

    Article  CAS  Google Scholar 

  • Stoltenberg, R.M. and Woolley, A.T. (2004), DNA-templated nanowire fabrication. Biomed. Microdevices 6(2), 105–111.

    Article  CAS  Google Scholar 

  • Storhoff, J.J., Elghanian, R., Mucic, R.C., Mirkin, C.A. and Letsinger, R.L. (1998). One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120(9), 1959–1964.

    Article  CAS  Google Scholar 

  • Storhoff, J.J., Lazarides, A.A., Mucic, R.C., Mirkin, C.A., Letsinger, R.L. and Schatz, G.C. (2000). What controls the optical properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 122(19), 4640–4650.

    Article  CAS  Google Scholar 

  • Storhoff, J.J. and Mirkin, C.A. (1999). Programmed materials synthesis with DNA. Chem. Rev. 99(7), 1849–1862.

    Article  CAS  Google Scholar 

  • Tsoli, M., Kuhn, H., Brandau, W., Esche, H. and Schmid, G. (2005). Cellular uptake and toxicity of Au55 clusters. Small 1(8–9), 841–844.

    Article  CAS  Google Scholar 

  • Turkevitch, J., Stevenson, P.C. and Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75.

    Article  Google Scholar 

  • Vargaftik, M.N., Zagorodnikov, V.P., Stolyarov, I.P., Moiseev, I.I., Likholobov, V.A., Kochubey, D.I., Chuvilin, A.L., Zaikovsky, V.I., Zamaraev, K.I. and Timofeeva, G.I. (1985). A novel giant palladium cluster. J. Chem. Soc., Chem. Comm. (14), 937–939.

    Google Scholar 

  • Warner, M.G. and Hutchison, J.E. (2003). Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nat. Mater. 2(4), 272–277.

    Article  CAS  Google Scholar 

  • Williams, K.A., Veenhuizen, P.T., de la Torre, B.G., Eritja, R. and Dekker, C. (2002). Nanotechnology: carbon nanotubes with DNA recognition. Nature 420(6917), 761.

    Article  CAS  Google Scholar 

  • Willner, I. and Katz, E. (2004). Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed. 43(45), 6042–6108.

    Article  Google Scholar 

  • Woehrle, G.H., Warner, M.G. and Hutchison, J.E. (2004). Molecular-level control of feature separation in one-dimensional nanostructure assemblies formed by biomolecular nanolithography. Langmuir 20(14), 5982–5988.

    Article  CAS  Google Scholar 

  • Xiao, S., Liu, F., Rosen, A.E., Hainfeld, J.F., Seeman, N.C., Musier-Forsyth, K. and Kiehl, R.A. (2002). Self-assembly of metallic nanoparticle arrays by DNA scaffolding. J. Nanoparticle Res. 4(4), 313–317.

    Article  CAS  Google Scholar 

  • Zanchet, D., Micheel, C.M., Parak, W.J., Gerion, D. and Alivisatos, A.P. (2001). Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett. 1(1), 32–35.

    Article  CAS  Google Scholar 

  • Zou, B., Ceyhan, B., Simon, U. and Niemeyer, C.M. (2005). Self-assembly of crosslinked DNA-gold nano-particle layers visualized by in-situ scanning force microscopy. Adv. Mater. 17(13), 1643–1647.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fischler, M., Homberger, M., Simon, U. (2009). DNA-Mediated Assembly of Metal Nanoparticles: Fabrication, Structural Features, and Electrical Properties. In: Offenhäusser, A., Rinaldi, R. (eds) Nanobioelectronics - for Electronics, Biology, and Medicine. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09459-5_2

Download citation

Publish with us

Policies and ethics