Skip to main content

Structure and Dynamics of Fluids in Microporous and Mesoporous Earth and Engineered Materials

  • Chapter
Book cover Neutron Applications in Earth, Energy and Environmental Sciences

Part of the book series: Neutron Scattering Applications and Techniques ((NEUSCATT))

Abstract

The behavior of liquids in confined geometries (pores, fractures) typically differs, due to the effects of large internal surfaces and geometrical confinement, from their bulk behavior in many ways. Phase transitions (i.e., freezing and capillary condensation), sorption and wetting, and dynamical properties, including diffusion and relaxation, may be modified, with the strongest changes observed for pores ranging in size from <2 to 50 nm—the micro- and mesoporous regimes. Important factors influencing the structure and dynamics of confined liquids include the average pore size and pore size distribution, the degree of pore interconnection, and the character of the liquid–surface interaction. While confinement of liquids in hydrophobic matrices, such as carbon nanotubes, or near the surfaces of mixed character, such as many proteins, has also been an area of rapidly growing interest, the confining matrices of interest to earth and materials sciences usually contain oxide structural units and thus are hydrophilic. The pore size distribution and the degree of porosity and inter-connection vary greatly amongst porous matrices. Vycor, xerogels, aerogels, and rocks possess irregular porous structures, whereas mesoporous silicas (e.g., SBA-15, MCM-41, MCM-48), zeolites, and layered systems, for instance clays, have high degrees of internal order. The pore type and size may be tailored by means of adjusting the synthesis regimen. In clays, the interlayer distance may depend on the level of hydration. Although studied less frequently, matrices such as artificial opals and chrysotile asbestos represent other interesting examples of ordered porous structures. The properties of neutrons make them an ideal probe for comparing the properties of bulk fluids with those in confined geometries. In this chapter, we provide a brief review of research performed on liquids confined in materials of interest to the earth and material sciences (silicas, aluminas, zeolites, clays, rocks, etc.), emphasizing those neutron scattering techniques that assess both structural modification and dynamical behavior. Quantitative understanding of the complex solid–fluid interactions under different thermodynamic situations will impact both the design of better substrates for technological applications (e.g., chromatography, fluid capture, storage and release, and heterogeneous catalysis) as well as our fundamental understanding of processes encountered in the environment (i.e., fluid and waste mitigation, carbon sequestration, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. R. Cole, M. S. Gruszkiewicz, J. M. Simonson, A. A. Chialvo, Y. B. Melnichenko, G. D. Wignall, G. W. Lynn, J. S. Lin, A. Habenschuss, B. Gu, K. L. More, T. D. Burchell, A. Striolo, Y. Leng, P. T. Cummings, W. T. Cooper, M. Schilling, K. E. Gubbins, H. Frielinghaus, Influence of nanoscale porosity on fluid behavior. Water-Rock Interaction, Vol. 1, Editors: R. Wanty and R. Seal, Proceedings to the 11th International Symposium on Water-Rock Interaction, A. A. Balkema, Rotterdam, The Netherlands, 735–739, (2004)

    Google Scholar 

  2. B. Belonoshko, Geochim. Cosmochim. Acta 53(10), 2581 (1989)

    Google Scholar 

  3. J. J. Tuck, P. L. Hall, M. H. B. Hayes, D. K. Ross, and J. B. Hayter, J. Chem. Soc., Faraday Trans. 81, 833 (1985)

    CAS  Google Scholar 

  4. N. T. Skipper, A. K. Soper, and J. D. C. Mcconnell, J. Chem. Phys. 94(8), 5751 (1991)

    CAS  Google Scholar 

  5. N. T. Skipper, M. V. Smalley, G. D. Williams, A. K. Soper, and C. H. Thompson, J. Phys. Chem. 99(39), 14201 (1995)

    CAS  Google Scholar 

  6. C. Pitteloud, D. H. Powell, M. A. Gonzalez, and G. J. Cuello, Coll. Surf. A 217(1–3), 129 (2003)

    CAS  Google Scholar 

  7. Y. F. Wang, C. Bryan, H. F. Xu, and H. Z. Gao, Geology 31(5), 387 (2003)

    CAS  Google Scholar 

  8. J. W. Wang, A. G. Kalinichev, and R. J. Kirkpatrick, Earth Planet. Sci. Lett. 222(2), 517 (2004)

    CAS  Google Scholar 

  9. J. W. Wang, A. G. Kalinichev, and R. J. Kirkpatrick, Geochim. Cosmochim. Acta 68(16), 3351 (2004)

    CAS  Google Scholar 

  10. J. W. Wang, A. G. Kalinichev, R. J. Kirkpatrick, and R. T. Cygan, J. Phys. Chem. B 109(33), 15893 (2005)

    CAS  Google Scholar 

  11. J. W. Wang, A. G. Kalinichev, and R. J. Kirkpatrick, Geochim. Cosmochim. Acta 70(3), 562 (2006)

    CAS  Google Scholar 

  12. S. H. J. Idziak and Y. L. Li, Curr. Opin. Colloid Interface Sci. 3(3), 293 (1998)

    CAS  Google Scholar 

  13. D. K. Dysthe and R. A. Wogelius, Chem. Geol. 230(3–4), 175 (2006)

    CAS  Google Scholar 

  14. J. Alejandre, M. LozadaCassou, and L. Degreve, Mol. Phys. 88(5), 1317 (1996)

    CAS  Google Scholar 

  15. E. Pitard, M. L. Rosinberg, and G. Tarjus, Mol. Simul. 17(4–6), 399 (1996)

    CAS  Google Scholar 

  16. L. D. Gelb, K. E. Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62(12), 1573 (1999)

    CAS  Google Scholar 

  17. J. M. Drake, J. Klafter, and P. Levitz, Science 251(5001), 1574 (1991)

    CAS  Google Scholar 

  18. Y. B. Melnichenko, J. Schüller, R. Richert, B. Ewen, and C. K. Loong, J. Chem. Phys. 103(6), 2016 (1995)

    CAS  Google Scholar 

  19. E. P. Gilbert, P. A. Reynolds, P. Thiyagarajan, D. G. Wozniak, and J. W. White, Phys. Chem. Chem. Phys. 1(11), 2715 (1999)

    CAS  Google Scholar 

  20. T. Bellini, N. A. Clark, C. D. Muzny, L. Wu, C. W. Garland, D. W. Schaefer, B. J. Olivier, and B. J. Oliver, Phys. Rev. Lett. 69(5), 788 (1992)

    CAS  Google Scholar 

  21. A. P. Radlinski, E. Z. Radlinska, M. Agamalian, G. D. Wignall, P. Lindner, and O. G. Randl, Phys. Rev. Lett. 82(15), 3078 (1999)

    CAS  Google Scholar 

  22. A. P. Radlinski, Neutron Scattering In Rev. Min. Geochem. (H.-R. Wenk, ed.), 63, 363 (2006)

    CAS  Google Scholar 

  23. D. R. Cole, K. W. Herwig, E. Mamontov, and J. Z. Larese, Neutron Scattering In Rev. Mineral. Geochem. (H.-R. Wenk, ed.), 63, 313 (2006)

    CAS  Google Scholar 

  24. D. A. Neumann, Materials Today 9(1–2), 34 (2006)

    CAS  Google Scholar 

  25. L. Feigin and D. Svergun, Structural Analysis by Small-Angle X-Ray and Neutron Scattering (Plenum Press, New York, 1987)

    Google Scholar 

  26. J. C. Dore, M. A. M. Sufi, and M. C. Bellissent-Funel, Phys. Chem. Chem. Phys. 2(8), 1599 (2000)

    CAS  Google Scholar 

  27. M. C. Bellissent-Funel, J. Mol. Liq. 90(1–3), 313 (2001)

    CAS  Google Scholar 

  28. F. Bruni, M. A. Ricci, and A. K. Soper, J. Chem. Phys. 109(4), 1478 (1998)

    CAS  Google Scholar 

  29. B. Webber and J. Dore, J. Phys.: Condens. Matter 16(45), S5449 (2004)

    CAS  Google Scholar 

  30. D. C. Steytler, J. C. Dore, and C. J. Wright, J. Phys. Chem. 87(14), 2458 (1983)

    CAS  Google Scholar 

  31. M. C. Bellissent-Funel, J. Lal, and L. Bosio, J. Chem. Phys. 98(5), 4246 (1993)

    CAS  Google Scholar 

  32. T. Takamuku, M. Yamagami, H. Wakita, Y. Masuda, and T. Yamaguchi, J. Phys. Chem. B 101(29), 5730 (1997)

    CAS  Google Scholar 

  33. J. M. Baker, J. C. Dore, and P. Behrens, J. Phys. Chem. B 101(32), 6226 (1997)

    CAS  Google Scholar 

  34. J. Dore, B. Webber, M. Hartl, P. Behrens, and T. Hansen, Physica A 314(1–4), 501 (2002)

    CAS  Google Scholar 

  35. V. Venuti, V. Crupi, D. Majolino, P. Migliardo, and M. C. Bellissent-Funel, Physica B 350, e599 (2004)

    CAS  Google Scholar 

  36. J. Dore, Chem. Phys. 258(2–3), 327 (2000)

    CAS  Google Scholar 

  37. M. Agamalian, J. M. Drake, S. K. Sinha, and J. D. Axe, Phys. Rev. E 55(3), 3021 (1997)

    CAS  Google Scholar 

  38. M. A. Ricci, F. Bruni, P. Gallo, M. Rovere, and A. K. Soper, J. Phys.: Condens. Matter 12(8A), A345 (2000)

    CAS  Google Scholar 

  39. C. Poinsignon, H. Estradeszwarckopf, J. Conard, and A. J. Dianoux, Physica B 156, 140 (1989)

    Google Scholar 

  40. N. T. Skipper, A. K. Soper, and M. V. Smalley, J. Phys. Chem. 98(3), 942 (1994)

    CAS  Google Scholar 

  41. N. T. Skipper, G. D. Williams, A. V. C. de Siqueira, C. Lobban, and A. K. Soper, Clay Miner. 35(1), 283 (2000)

    CAS  Google Scholar 

  42. N. T. Skipper, P. A. Lock, J. O. Titiloye, J. Swenson, Z. A. Mirza, W. S. Howells, and F. Fernandez-Alonso, Chem. Geol. 230(3–4), 182 (2006)

    CAS  Google Scholar 

  43. G. D. Williams, N. T. Skipper, and M. V. Smalley, Physica B 234, 375 (1997)

    Google Scholar 

  44. G. D. Williams, A. K. Soper, N. T. Skipper, and M. V. Smalley, J. Phys. Chem. B 102(45), 8945 (1998)

    CAS  Google Scholar 

  45. A. V. de Siqueira, C. Lobban, N. T. Skipper, G. D. Williams, A. K. Soper, R. Done, J. W. Dreyer, R. J. Humphreys, and J. A. R. Bones, J. Phys.: Condens. Matter 11(47), 9179 (1999)

    Google Scholar 

  46. C. Pitteloud, D. H. Powell, A. K. Soper, and C. J. Benmore, Physica B 276, 236 (2000)

    Google Scholar 

  47. C. Pitteloud, D. H. Powell, and H. E. Fischer, Phys. Chem. Chem. Phys. 3(24), 5567 (2001)

    CAS  Google Scholar 

  48. J. Swenson, R. Bergman, and S. Longeville, J. Non-Cryst. Solids 307, 573 (2002)

    Google Scholar 

  49. G. Sposito, The Chemistry of Soils (Oxford Univ. Press, New York, 1989)

    Google Scholar 

  50. G. Sposito, N. T. Skipper, R. Sutton, S. H. Park, A. K. Soper, and J. A. Greathouse, Proc. Natl. Acad. Sci. USA. 96(7), 3358 (1999)

    CAS  Google Scholar 

  51. N. T. Skipper, A. K. Soper, J. D. C. McConnell, and K. Refson, Chem. Phys. Lett. 166(2), 141 (1990)

    CAS  Google Scholar 

  52. H. E. King, S. T. Milner, M. Y. Lin, J. P. Singh, and T. G. Mason, Phys. Rev. E 75(2), 021403 (2007)

    Google Scholar 

  53. J. Connolly, W. Bertram, J. Barker, C. Buckley, T. Edwards, and R. Knott, J. Petrol. Sci. Eng. 53(3–4), 171 (2006)

    CAS  Google Scholar 

  54. T. Itakura, W. K. Bertram, and R. B. Knott, Appl. Clay Sci. 29(1), 1 (2005)

    CAS  Google Scholar 

  55. G. Rother, Y. B. Melnichenko, D. R. Cole, H. Frielinghaus, and G. D. Wignall, J. Phys. Chem. C 111(43), 15736 (2007)

    CAS  Google Scholar 

  56. W. Wu, Polymer 23(13), 1907 (1982)

    CAS  Google Scholar 

  57. M. Thommes, G. H. Findenegg, and M. Schoen, Langmuir 11(6), 2137 (1995)

    CAS  Google Scholar 

  58. I. Brovchenko and A. Oleinikova, J. Phys. Chem. C 111, 15716 (2007)

    CAS  Google Scholar 

  59. E. Hoinkis and B. Rohl-Kuhn, J. Colloid Interface Sci. 296(1), 256 (2006)

    CAS  Google Scholar 

  60. O. Sel, A. Brandt, D. Wallacher, M. Thommes, and B. Smarsly, Langmuir 23(9), 4724 (2007)

    CAS  Google Scholar 

  61. N. Floquet, J. P. Coulomb, and G. André, Microp. Mesopor. Mater. 72, 143 (2004)

    CAS  Google Scholar 

  62. K. Itoh, Y. Miyahara, S. Orimo, H. Fujii, T. Kamiyama, and T. Fukunaga, J. Alloys Compd. 356–357, 608 (2003)

    Google Scholar 

  63. A. Schreiber, S. Reinhardt, and G. H. Findenegg, Characterization of Porous Solids Vi 144, 177 (2002)

    CAS  Google Scholar 

  64. K. Morishige and Y. Nakamura, Langmuir 20(11), 4503 (2004)

    CAS  Google Scholar 

  65. K. Morishige, M. Tateishi, F. Hirose, and K. Aramaki, Langmuir 22(22), 9220 (2006)

    CAS  Google Scholar 

  66. Y. B. Melnichenko, G. D. Wignall, D. R. Cole, and H. Frielinghaus, J. Chem. Phys. 124(20), 204711 (2006)

    CAS  Google Scholar 

  67. J. V. Maher, W. I. Goldburg, D. W. Pohl, and M. Lanz, Phys. Rev. Lett. 53(1), 60 (1984)

    CAS  Google Scholar 

  68. A. E. Bailey, B. J. Frisken, and D. S. Cannell, Phys. Rev. E 56(3), 3112 (1997)

    CAS  Google Scholar 

  69. B. J. Frisken, D. S. Cannell, M. Y. Lin, and S. K. Sinha, Phys. Rev. E 51(6), 5866 (1995)

    CAS  Google Scholar 

  70. M. Y. Lin, S. K. Sinha, J. M. Drake, X. I. Wu, P. Thiyagarajan, and H. B. Stanley, Phys. Rev. Lett. 72(14), 2207 (1994)

    CAS  Google Scholar 

  71. F. Formisano and J. Teixeira, J. Phys.: Condens. Matter 12(8A), A351 (2000)

    CAS  Google Scholar 

  72. F. Formisano and J. Teixeira, Eur. Phys. J. E 1(1), 1 (2000)

    CAS  Google Scholar 

  73. A. J. Liu, D. J. Durian, E. Herbolzheimer, and S. A. Safran, Phys. Rev. Lett. 65, 1897 (1990)

    CAS  Google Scholar 

  74. P. G. de Gennes, J. Phys. Chem. 88, 6469 (1984)

    Google Scholar 

  75. S. Schemmel, G. Rother, H. Eckerlebe, and G. H. Findenegg, J. Chem. Phys. 122(24), 244718 (2005)

    Google Scholar 

  76. D. Woywod, S. Schemmel, G. Rother, G. H. Findenegg, and M. Schoen, J. Chem. Phys. 122(12), 124510 (2005)

    Google Scholar 

  77. B. F. Mentzen, J. Phys. Chem. C 111, 18932 (2007)

    CAS  Google Scholar 

  78. N. Floquet, J. P. Coulomb, G. Weber, O. Bertrand, and J. P. Bellat, J. Phys. Chem. B 107, 685 (2003)

    CAS  Google Scholar 

  79. N. Floquet, J. P. Coulomb, J. P. Bellat, J. M. Simon, G. Weber, and G. Andre, J. Phys. Chem. C 111, 18182 (2007)

    CAS  Google Scholar 

  80. H. Jobic, M. Czjzek, and R. A. Vansanten, J. Phys. Chem. 96(4), 1540 (1992)

    CAS  Google Scholar 

  81. P. C. H. Mitchell, J. Tomkinson, J. G. Grimblot, and E. Payen, J. Chem. Soc., Faraday Trans. 89(11), 1805 (1993)

    CAS  Google Scholar 

  82. H. Jobic, A. Tuel, M. Krossner, and J. Sauer, J. Phys. Chem. 100(50), 19545 (1996)

    CAS  Google Scholar 

  83. I. A. Beta, H. Bohlig, and B. Hunger, Phys. Chem. Chem. Phys. 6(8), 1975 (2004)

    CAS  Google Scholar 

  84. C. Corsaro, V. Crupi, F. Longo, D. Majolino, V. Venuti, and U. Wanderlingh, J. Phys.: Condens. Matter 17(50), 7925 (2005)

    CAS  Google Scholar 

  85. E. Geidel, H. Lechert, J. Dobler, H. Jobic, G. Calzaferri, and F. Bauer, Micropor. Mesopor. Mater. 65(1), 31 (2003)

    CAS  Google Scholar 

  86. F. Venturini, P. Gallo, M. A. Ricci, A. R. Bizzarri, and S. Cannistraro, J. Chem. Phys. 114(22), 10010 (2001)

    CAS  Google Scholar 

  87. V. Crupi, D. Majolino, P. Migliardo, V. Venuti, and A. J. Dianoux, Appl. Phys. A 74, S555 (2002)

    CAS  Google Scholar 

  88. V. Crupi, A. J. Dianoux, D. Majolino, P. Migliardo, and V. Venuti, Phys. Chem. Chem. Phys. 4(12), 2768 (2002)

    CAS  Google Scholar 

  89. M. Bée, Chem. Phys. 292, 121 (2003)

    Google Scholar 

  90. J. Teixeira, M. C. Bellissent-Funel, S. H. Chen, and A. J. Dianoux, Phys. Rev. A 31(3), 1913 (1985)

    CAS  Google Scholar 

  91. M. C. Bellissent-Funel, S. Chen, and J. M. Zanotti, Phys. Rev. E 51, 4558 (1995)

    CAS  Google Scholar 

  92. J. M. Zanotti, M. C. Bellissent-Funel, and S. H. Chen, Phys. Rev. E 59(3), 3084 (1999)

    CAS  Google Scholar 

  93. S. Takahara, M. Nakano, S. Kittaka, Y. Kuroda, T. Mori, H. Hamano, and T. Yamaguchi, J. Phys. Chem. B 103(28), 5814 (1999)

    CAS  Google Scholar 

  94. F. Mansour, R. M. Dimeo, and H. Peemoeller, Phys. Rev. E 66(4), 041307 (2002)

    CAS  Google Scholar 

  95. A. Faraone, L. Liu, C. Y. Mou, P. C. Shih, J. R. D. Copley, and S. H. Chen, J. Chem. Phys. 119(7), 3963 (2003)

    CAS  Google Scholar 

  96. A. Faraone, L. Liu, C. Y. Mou, P. C. Shih, C. Brown, J. R. D. Copley, R. M. Dimeo, and S. H. Chen, Eur. Phys. J. E 12, S59 (2003)

    CAS  Google Scholar 

  97. L. Liu, A. Faraone, C. Mou, C. W. Yen, and S. H. Chen, J. Phys.: Condens. Matter 16(45), S5403 (2004)

    CAS  Google Scholar 

  98. S. Takahara, N. Sumiyama, S. Kittaka, T. Yamaguchi, and M. C. Bellissent-Funel, J. Phys. Chem. B 109(22), 11231 (2005)

    CAS  Google Scholar 

  99. V. Crupi, D. Majolino, P. Migliardo, and V. Venuti, Physica A 304(1–2), 59 (2002)

    CAS  Google Scholar 

  100. S. Chen, P. Gallo, and M. C. Bellissent-Funel, Can. J. Phys. 73, 703 (1995)

    CAS  Google Scholar 

  101. J. Colmenero, A. Arbe, A. Alegria, M. Monkenbusch, and D. Richter, J. Phys.: Condens. Matter 11(10A), A363 (1999)

    CAS  Google Scholar 

  102. E. Mamontov and D. R. Cole, Phys. Chem. Chem. Phys. 8(42), 4908 (2006)

    CAS  Google Scholar 

  103. N. A. Hewish, J. E. Enderby, and W. S. Howells, J. Phys. C: Solid State Phys. 16(10), 1777 (1983)

    CAS  Google Scholar 

  104. H. Paoli, A. Methivier, H. Jobic, C. Krause, H. Pfeifer, F. Stallmach, and J. Karger, Micropor. Mesopor. Mater. 55(2), 147 (2002)

    CAS  Google Scholar 

  105. V. Crupi, D. Majolino, P. Migliardo, V. Venuti, U. Wanderlingh, T. Mizota, and M. Telling, J. Phys. Chem. B 108(14), 4314 (2004)

    CAS  Google Scholar 

  106. V. Crupi, D. Majolino, P. Migliardo, V. Venuti, and T. Mizota, Mol. Phys. 102(18), 1943 (2004)

    CAS  Google Scholar 

  107. V. Crupi, D. Majolino, and V. Venuti, J. Phys.: Condens. Matter 16(45), S5297 (2004)

    CAS  Google Scholar 

  108. S. Mitra, R. Mukhopadhyay, K. T. Pillai, and V. N. Vaidya, Solid State Commun. 105(11), 719 (1998)

    CAS  Google Scholar 

  109. S. Mitra, R. Mukhopadhyay, I. Tsukushi, and S. Ikeda, J. Phys.: Condens. Matter 13(37), 8455 (2001)

    CAS  Google Scholar 

  110. S. A. Maddox, P. Gomez, K. R. McCall, and J. Eckert, Geophys. Res. Lett. 29(8), 1259 (2002)

    Google Scholar 

  111. S. Nair, Z. Chowdhuri, I. Peral, D. A. Neumann, L. C. Dickinson, G. Tompsett, H. K. Jeong, and M. Tsapatsis, Phys. Rev. B 71(10), 104301 (2005)

    Google Scholar 

  112. S. Indris, P. Heitjans, H. Behrens, R. Zorn, and B. Frick, Phys. Rev. B 71(6), 064205 (2005)

    Google Scholar 

  113. J. Swenson, H. Jansson, W. S. Howells, and S. Longeville, J. Chem. Phys. 122(8), 084505 (2005)

    CAS  Google Scholar 

  114. E. Fratini, S. H. Chen, P. Baglioni, M. C. Bellissent-Funel, Phys. Rev. E 6402(2), 020201 (2001)

    Google Scholar 

  115. E. Fratini, S. H. Chen, P. Baglioni, J. C. Cook, and J. R. D. Copley, Phys. Rev. E 65(1), 010201 (2002)

    CAS  Google Scholar 

  116. A. Faraone, S. H. Chen, E. Fratini, P. Baglioni, L. Liu, and C. Brown, Phys. Rev. E 65(4), 040501 (2002)

    CAS  Google Scholar 

  117. S. Takahara, S. Kittaka, Y. Kuroda, T. Yamaguchi, H. Fujii, and M. C. Bellissent-Funel, Langmuir 16(26), 10559 (2000)

    CAS  Google Scholar 

  118. S. Kittaka, S. Takahara, T. Yamaguchi, and M. C. B. Funel, Langmuir 21(4), 1389(2005)

    CAS  Google Scholar 

  119. E. Mamontov, Y. A. Kumzerov, and S. B. Vakhrushev, Phys. Rev. E 71(6), 061502 (2005)

    CAS  Google Scholar 

  120. M. Gay-Duchosal, D. H. Powell, R. E. Lechner, and B. Ruffle, Physica B 276, 234 (2000)

    Google Scholar 

  121. J. Swenson, R. Bergman, and W. S. Howells, J. Chem. Phys. 113(7), 2873 (2000)

    CAS  Google Scholar 

  122. J. Swenson, R. Bergman, S. Longeville, and W. S. Howells, Physica B 301(1–2), 28 (2001)

    CAS  Google Scholar 

  123. J. Swenson, R. Bergman, and S. Longeville, J. Chem. Phys. 115(24), 11299 (2001)

    CAS  Google Scholar 

  124. N. Malikova, A. Cadene, V. Marry, E. Dubois, P. Turq, J. M. Zanotti, and S. Longeville, Chem. Phys. 317(2–3), 226 (2005)

    CAS  Google Scholar 

  125. N. Malikova, A. Cadene, V. Marry, E. Dubois, and P. Turq, J. Phys. Chem. B 110(7), 3206 (2006)

    CAS  Google Scholar 

  126. L. J. Michot, A. Delville, B. Humbert, M. Plazanet, and P. Levitz, J. Phys. Chem. C 111(27), 9818 (2007)

    CAS  Google Scholar 

  127. N. Malikova, A. Cadene, E. Dubois, V. Marry, S. Durand-Vidal, P. Turq, J. Breu, S. Longeville, and J. M. Zanotti, J. Phys. Chem. C 111, 17603 (2007)

    CAS  Google Scholar 

  128. R. Schenkel, A. Jentys, S. F. Parker, and J. A. Lercher, J. Phys. Chem. B 108, 15013 (2004)

    CAS  Google Scholar 

  129. R. Schenkel, A. Jentys, S. F. Parker, and J. A. Lercher, J. Phys. Chem. B 108, 7902 (2004)

    CAS  Google Scholar 

  130. C. F. Mellot, A. M. Davidson, J. Eckert, and A. K. Cheetham, J. Phys. Chem. B 102, 2530 (1998)

    CAS  Google Scholar 

  131. A. Davidson, C. F. Mellot, J. Eckert, and A. K. Cheetham, J. Phys. Chem. B 104, 432 (2000)

    CAS  Google Scholar 

  132. R. Stockmeyer, Zeolites 4, 81 (1984)

    CAS  Google Scholar 

  133. N. J. Henson, J. Eckert, P. J. Hay, and A. Redondo, Chem. Phys. 261, 111 (2000)

    CAS  Google Scholar 

  134. I. A. Beta, J. Herve, E. Geidel, H. Bohlig, and B. Hunger, Spectrochem Acta A 57, 1393 (2001)

    CAS  Google Scholar 

  135. E. Kemner, A. R. Overweg, U. A. Jayasooriya, S. F. Parker, I. M. de Schepper, and G. J. Kearley, Appl. Phys. A 74, S1368 (2002)

    CAS  Google Scholar 

  136. J. Eckert, J. M. Nicol, J. Howard, and F. R. Trouw, J. Phys. Chem. 100, 10646 (1996)

    CAS  Google Scholar 

  137. H. Jobic, Spectrochem. Acta A 48, 293 (1992)

    Google Scholar 

  138. H. Jobic, Physica B 276, 222 (2000)

    Google Scholar 

  139. N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. OKeeffe, and O. M. Yaghi, Science 300, 1127 (2003)

    CAS  Google Scholar 

  140. Y. J. Glanville, J. V. Pearce, P. E. Sokol, B. Newalker, and S. Komarneni, Chem. Phys. 292, 289 (2003)

    CAS  Google Scholar 

  141. N. E. Benes, H. Jobic, and H. Verweij, Micropor. Mesopor. Mater. 43, 147 (2001)

    CAS  Google Scholar 

  142. C. Alba-Simionesco, G. Dosseh, E. Dumont, B. Frick, B. Geil, D. Morineau, V. Teboul, and Y. Xia, Eur. Phys. J. E 12, 19 (2003)

    CAS  Google Scholar 

  143. H. Jobic, M. Bée, J. Kärger, R. S. Vartapetian, C. Balzer, and A. Julbe, J. Membr. Sci. 108, 71 (1995)

    CAS  Google Scholar 

  144. A. G. Stepanov, T. O. Shegai, M. V. Luzgin, and H. Jobic, Eur. Phys. J. E 12, 57 (2003)

    CAS  Google Scholar 

  145. H. Jobic, H. Paoli, A. Mëthivier, G. Ehlers, J. Kärger, and C. Krause, Micropor. Mesopor. Mater. 59, 113 (2003)

    CAS  Google Scholar 

  146. H. Fu, F. Trouw, and P. E. Sokol, J. Low Temp. Phys. 116, 149 (1999)

    CAS  Google Scholar 

  147. N. K. Bär, H. Ernst, H. Jobic, and J. Kärger, Magn. Reson. Chem. 37, S79 (1999)

    Google Scholar 

  148. H. Jobic, J. Kärger, and M. Bée, Phys. Rev. Lett. 82, 4260 (1999)

    CAS  Google Scholar 

  149. G. K. Papadopoulos, H. Jobic, and D. N. Theodorou, J. Phys. Chem. B 108, 12748 (2004)

    CAS  Google Scholar 

  150. H. Jobic, A. N. Fitch, and J. Combet, J. Phys. Chem. B 104, 8491 (2000)

    CAS  Google Scholar 

  151. S. Gautam, S. Mitra, A. Sayeed, S. Yashonath, S. L. Chaplot, and R. Mukhopadhyay, Chem. Phys. Lett. 442, 311 (2007)

    CAS  Google Scholar 

  152. S. Mitra and R. Mukhopadhyay, Curr. Sci. 84, 653 (2003)

    CAS  Google Scholar 

  153. H. Jobic and D. N. Theodorou, J. Phys. Chem. B 110, 1964 (2006)

    CAS  Google Scholar 

  154. E. Mamontov, Y. A. Kumzerov, and S. B. Vakhrushev, Phys. Rev. E 72, 051502 (2005)

    CAS  Google Scholar 

  155. H. Jobic, M. Bée, and S. Pouget, J. Phys. Chem. B 104, 7130 (2000)

    CAS  Google Scholar 

  156. H. Jobic, J. Mol. Catal. A 158, 135 (2000)

    CAS  Google Scholar 

  157. H. Jobic and D. N. Theodorou, Micropor. Mesopor. Mater. 102, 21 (2007)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Cole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cole, D.R., Mamontov, E., Rother, G. (2009). Structure and Dynamics of Fluids in Microporous and Mesoporous Earth and Engineered Materials. In: Liang, L., Rinaldi, R., Schober, H. (eds) Neutron Applications in Earth, Energy and Environmental Sciences. Neutron Scattering Applications and Techniques. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09416-8_19

Download citation

Publish with us

Policies and ethics