Skip to main content

Electrification in Hurricanes: Implications for Water Vapor in the Tropical Tropopause Layer

  • Chapter
  • First Online:
Hurricanes and Climate Change

Abstract

This study explores the relation between lightning frequency associated with hurricanes and water vapor in the Tropical Tropopause Layer (TTL) over the Tropical Americas (Caribbean and Gulf of Mexico) during the 2005 hurricane season. The hypothesis herein is that hurricanes that exhibit increases in lightning frequency are associated with stronger updrafts that can transport more moisture into the TTL. This added moisture can potentially be transported irreversibly into the stratosphere and alter the chemical and radiative properties of this layer of the atmosphere. Several studies predict increases in hurricane intensity, particularly in the Atlantic basin, as a result of increases in sea surface temperature due to global warming. Given that climate forecasts are very sensitive to water vapor concentrations in the TTL and in the stratosphere, it is essential to understand the effect that hurricanes have on TTL moisture.

In our analysis, we use a combination of ground-based and space-borne measurements. These measurements consist of cloud-to-ground lightning data from the Long Range Lightning Detection Network, GOES–12 infrared brightness temperatures, and water vapor from the Microwave Limb Sounder instrument aboard the Aura satellite obtained at 100, 147, and 215 hPa. In general, we find a negative correlation between lightning frequency and storm intensification (i.e., minimum central pressure) with a significant storm-to-storm variability. On hurricane days, we find hydration within 5° from the center of the storm at the 215 and 147 hPa levels, and practically no perturbation to the 100 hPa water vapor field by the storms. Statistical analysis show weak but statistically significant correlations between lightning frequency and 215 hPa MLS water vapor (r = +0.2115), 215 hPa and 147 hPa MLS water vapor (r = +0.2689), and 147 hPa and 100 hPa MLS water vapor (r = −0.2936) within the uncertainty of the measurements. These correlations suggest that increases in lightning frequency correspond to hydration of the upper troposphere and dehydration of the 100 hPa level within the hurricane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker, M. B., A. M. Blyth, H. J. Christian, J. Latham, Miller K. L.and Gadian, A. M. 1999: Relationships between lightning activity and various thundercloud parameters: Satellite and modeling studies, Atmos. Res., 51, 221-236.

    Article  Google Scholar 

  • Black, R.A., and J. Hallett, 1999: Electrification of the hurricane, J. Atmos. Sci., 56, 2004-2028.

    Article  Google Scholar 

  • Brewer, A. W., 1949: Evidence for a world circulation provided by measurements of helium and water vapor in the stratosphere, Quart. J. Roy. Meteorol. Soc., 75, 351-363.

    Article  Google Scholar 

  • Christian, H. J., Blakeslee, R. J. Boccippio, D. J. Boeck, W. L. Buechler, D. E. Driscoll , K. T. Goodman, S. J. Hall, J. M. Koshak, W. J. Mach, and D. M. Stewart, M. F. 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108, D002347.

    Google Scholar 

  • Cummins, K. L., M. J. Murphy, Bardo, E. A. Hiscox, W. L. Pyle, and R. B. Pifer, A. E. 1998: A combined TOA/MDF technology upgrade of the U. S. National Lightning Detection Network, J. Geophys. Res., 103, 9035-9044.

    Article  Google Scholar 

  • Danielsen, E. F., 1993: In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by large-scale upwelling in tropical cyclones, J. Geophys. Res., 98, 8665-8681.

    Article  Google Scholar 

  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate, Nature, 326, 483-485.

    Article  Google Scholar 

  • Forster, P. M. D., and K. P. Shine, 1999: Stratospheric water vapour changes as a possible contributor to observed stratospheric cooling, Geophys. Res. Lett., 26, 3309-3312.

    Article  Google Scholar 

  • Fueglistaler, S., H. Wernli, and T. Peter, 2004: Tropical troposphere-to-stratosphere transport inferred from trajectory calculations, J. Geophys. Res., 109, D03108.

    Article  Google Scholar 

  • Gettelman, A., and P. M. D. Forster, 2002: A climatology of the tropical tropopause layer, J. Meteorol. Soc. Jpn., 80, 911-924.

    Article  Google Scholar 

  • Gettelman, A., et al., 2004: Radiation balance of the tropical tropopause layer, J. Geophys. Res., 109, D07103.

    Google Scholar 

  • Holton, J. R., and A. Gettelman, 2001: Horizontal transport and the dehydration of the stratosphere, Geophys. Res. Lett., 28, 2799-2802.

    Article  Google Scholar 

  • Jensen, E. J., and L. Pfister, 2004: Transport and freeze-drying in the tropical tropopause layer, J. Geophys. Res., 109, D02207.

    Article  Google Scholar 

  • Jensen, E. J., L. Pfister, A. S. Ackerman, A. Tabazadeh, and B. O. Toon, 2001: A conceptual model of the dehydration of air due to freeze-drying by optically thin, laminar cirrus rising slowly across the tropical tropopause, J. Geophys. Res., 106, 17252-17273.

    Google Scholar 

  • Knutson, T. R. and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization, J. Clim., 17, 3477-3495.

    Article  Google Scholar 

  • Kossin, J. P., K. R. Knapp, D. J. Vimont, A. J. Murnane, and B. A. Harper, 2007: A globally consistent reanalysis of hurricane variability and trends, Geophys. Res. Lett., 34, L04815.

    Article  Google Scholar 

  • Minschwaner, K., and A. E. Dessler, 2004: Water vapor feedback in the tropical upper troposphere: Model results and observations, J. Clim., 17, 1272-1282.

    Article  Google Scholar 

  • Minschwaner, K., A. E. Dessler, and P. Sawaengphokhai, 2006: Multimodel analysis of the water vapor feedback in the tropical upper troposphere, J. Clim., 19, 5455-5464.

    Article  Google Scholar 

  • Molinari, J., P. K. Moore, V. P. Idone, R. W. Henderson, and A. B. Saljoughy, 1994: Cloud-to-ground lightning in Hurricane Andrew, J. Geophys. Res., 99, 1665-16676.

    Google Scholar 

  • Molinari, J., P. Moore, and V. Idone, 1998: Convective structure of hurricanes as revealed by lightning locations, Mon. Wea. Rev., 127, 520-534.

    Article  Google Scholar 

  • Petersen, W. A., and S. A. Rutledge, 2001: Regional Variability in Tropical Convection: Observations from TRMM, J. Climate, 14, 3566-3586.

    Article  Google Scholar 

  • Pittman, J.V., 2005: Transport in the tropical and subtropical lower stratosphere: Insights from in situ measurements of chemical tracers, Ph.D. thesis, Harvard University.Pittman, J.V., 2005: Transport in the tropical and subtropical lower stratosphere: Insights from in situ measurements of chemical tracers, Ph.D. thesis, Harvard University.

    Google Scholar 

  • Price, C. and M. Asfur, 2006: Can lightning observations be used as an indicator of upper tropospheric water vapor variability?, Bull. Amer. Meteor. Soc., 87, 291-298.

    Article  Google Scholar 

  • Ray, E. A. and K. H. Rosenlof, 2007: Hydration of the upper troposphere by tropical cyclones, J. Geophys. Res., 112, D12311.

    Article  Google Scholar 

  • Saunders, C. P. R., 1993: A review of thunderstorm electrification processes, J. Appl. Meteor., 32, 642-655.

    Article  Google Scholar 

  • Shao, X.-M., J. Harlin, M. Stock, M. Stanley, A. Regan, K. Wiens, Hamlin , T. Pongratz, M. Suszcynsky, and D. Light T. 2005, Katrina and Rita Were Lit Up With Lightning, Eos Trans. AGU, 86, 398.

    Article  Google Scholar 

  • Sherwood, S. C. and A. E. Dessler, 2001: A model for transport across the tropical tropopause, J. Atmos. Sciences, 58, 765-779.

    Article  Google Scholar 

  • Shindell, D. T., R. L. Miller, G. A. Schmidt, and L. Pandolfo, 1999: Simulation of recent northern winter climate trends by greenhouse-gas forcing, Nature, 399, 452-455.

    Article  Google Scholar 

  • Waters, J. W. et al., 2006 : The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite, IEEE Trans. Geosci. Remote Sens., 44, 1075-1092.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by an appointment to the NASA Postdoctoral Program at Marshall Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. LLDN data provided by the NASA Lightning Imaging Sensor (LIS) instrument team and the LIS data center via the Global Hydrology Resource Center (GHRC) located at the Global Hydrology and Climate Center (GHCC), Huntsville, Alabama through a license agreement with Global Atmospherics, Inc (GAI). The data available from the GHRC are restricted to LIS science team collaborators and to NASA EOS and TRMM investigators.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pittman, J.V., Chronis, T.G., Robertson, F.R., Miller, T.L. (2009). Electrification in Hurricanes: Implications for Water Vapor in the Tropical Tropopause Layer. In: Elsner, J., Jagger, T. (eds) Hurricanes and Climate Change. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09410-6_2

Download citation

Publish with us

Policies and ethics