Skip to main content

Boundary Layer Model for Moving Tropical Cyclones

  • Chapter
  • First Online:

Abstract

We propose a simple theoretical model for the boundary layer (BL) of moving tropical cyclones (TCs). The model estimates the horizontal and vertical wind velocity fields from a few TC characteristics: the maximum tangential wind speed V max , the radius of maximum winds R max , and Holland’s B parameter away from the surface boundary where gradient balance is approximately valid, in addition to the storm translation velocity V t , the surface drag coefficient C D , and the vertical diffusion coefficient of the horizontal momentum K.

The model is based on Smith’s (1968) formulation for stationary (axi-symmetric) tropical cyclones. Smith’s model is first extended to include storm motion and then solved using the momentum integral method. The scheme is computationally very efficient and is stable also for large B values and fast-moving storms.

Results are compared to those from other studies (Shapiro 1983; Kepert 2001) and validated using the Fifth-Generation Pennsylvania State University/NCAR Mesoscale Model (MM5). We find that Kepert’s (2001) BL model significantly underestimates the radial and vertical fluxes, whereas Shapiro’s (1983) slab-layer formulation produces radial and vertical winds that are a factor of about two higher than those produced by MM5. The velocity fields generated by the present model are consistent with MM5 and with tropical cyclone observations.

We use the model to study how the symmetric and asymmetric components of the wind field vary with the storm parameters mentioned above. In accordance with observations, we find that larger values of B and lower values of R max produce horizontal and vertical wind profiles that are more picked near the radius of maximum winds. We also find that, when cyclones in the northern hemisphere move, the vertical and storm-relative radial winds intensify at the right-front quadrant of the vortex, whereas the storm-relative tangential winds are more intense in the left-front region. The asymmetry is higher for faster moving TCs and for higher surface drag coefficients C D .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anthes, R.A., 1971: Iterative solutions to the steady-state axisymetric boundary layer equations under an intense pressure gradient, Mon Wea. Rev., 99, 261-268.

    Article  Google Scholar 

  • Anthes, R. A., 1982: Tropical Cyclones: Their Evolution, Structure, and Effects, Meteorological Monographs Number 41, American Meteorological Society, Boston, MA,

    Google Scholar 

  • Black, M.L., Gamache, J.F. Marks Jr., F.D. Samsury and C.E. Willoughby, H.E. 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 2291-2312.

    Article  Google Scholar 

  • Bode, L. and R.K. Smith, 1975: A parameterization of the boundary layer of a tropical cyclone. Bound. Layer Meteor., 8, 3-19

    Article  Google Scholar 

  • Chapra, S.C. and R.P. Canale, 2002: Numerical methods for engineers, 4th Edition, McGraw-Hill, New York, U.S.A.

    Google Scholar 

  • Chow, S., 1971: A study of the wind field in the planetary boundary layer of a moving tropical cyclone. M.S. Thesis, Dept. of Meteor. and Oceanogr., New York University, 59pp. [NOAA/NHRL Library, 1320 South Dixie Highway, Coral Gables, FL 33146].

    Google Scholar 

  • Donelan, M. A., Haus, B. K. Reul, N. Plant, W. J. Stiassnie, M. Graber, H. C. Brown, O. B. Saltzman, E. S. 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    Article  Google Scholar 

  • Eliassen, A. and M. Lystad, 1977: The Ekman layer of a circular vortex: A numerical and theoretical study. Geophys. Norv., 31, 1-16.

    Google Scholar 

  • Emanuel, K.A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci., 43, 585-604.

    Article  Google Scholar 

  • Emanuel, K.A., 1989: Polar lows as Artic hurricanes. Tellus, 41A, 1-17.

    Article  Google Scholar 

  • Frank, W.M., 1977: The structure and energetics of the tropical cyclone: I. Storm structure. Mon. Wea. Rev., 105, 1119-1135.

    Article  Google Scholar 

  • Haurwitz, B., 1935: On the variation of wind with elevation under the influence of viscosity in curved air currents. Beitrage zur Geophysik, 45, p.243.

    Google Scholar 

  • Hawkins, H.F. and D.T. Rubsam, 1968: Hurricane Hilda, 1964. II. Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96, 617-636.

    Article  Google Scholar 

  • Holland, G.J., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 1212-1218.

    Article  Google Scholar 

  • Jorgensen, D.P., 1984a: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observations by research aircraft. J. Atmo. Sci., 41(8), 1268-1286.

    Article  Google Scholar 

  • Jorgensen, D.P., 1984b: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmo. Sci., 41(8), 1287-1311.

    Article  Google Scholar 

  • Kepert, J. and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 2485-2501.

    Article  Google Scholar 

  • Kepert, J., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmo. Sci, 58, 2469-2484.

    Article  Google Scholar 

  • Kepert, J., 2006a: Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges, J. Atmo. Sci, 63, 2169-2193.

    Article  Google Scholar 

  • Kepert, J., 2006b: Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch, J. Atmo. Sci, 63, 2194-2211.

    Article  Google Scholar 

  • Kundu, K.K. and I.M. Cohen, 2004: Fluid mechanics. 3rd Edition, Elsevier Academic Press.

    Google Scholar 

  • Large, W. G. and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds, J. Phys. Oceanogr., 11, 324–336.

    Article  Google Scholar 

  • La Seur, N.E. and H.F. Hawkins, 1963: An analysis of Hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev., 91, 694-709.

    Article  Google Scholar 

  • Landsea, C.W., 2000: Climate variability of tropical cyclones: Past, present and future. In: Pielke, Jr. R. and Pielke R. Sr. (eds) Storms. Vol.1, Routledge, NY, U.S.A, pp. 220-241.

    Google Scholar 

  • Leslie, L.M. and R.K. Smith, 1970: The surface boundary layer of a hurricane- Part II. Tellus, 22, 288-297.

    Article  Google Scholar 

  • Mack, L.M., 1962: The laminar boundary layer on a disk of finite radius in a rotating fluid. Calif. Instit. of Tech. Rep. No. 32-224.

    Google Scholar 

  • Miller, B.I., 1965: A simple model of the hurricane inflow layer. Nat. Hurr. Res. Proj. Rep. No. 75, 16pp.

    Google Scholar 

  • Myers, V.A. and W. Malkin, 1961: Some properties of hurricane wind fields as deducted from trajectories. NHRP Rep. 49, 45pp. [NOAA/NHRL Library, 1320 South Dixie Highway, Coral Gables, FL 33146].

    Google Scholar 

  • Myers, V.A., 1957: Maximum hurricane winds. Bull. Amer. Meteor. Soc., 38, 227-228.

    Google Scholar 

  • Powell, M. D., P. J. Vickery and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones, Nature, 422, 279–283.

    Article  Google Scholar 

  • Renno, N. and A. Ingersoll, 1996: Natural convection as a heat engine: A theory for CAPE. J. Atmo. Sci., 53(4), 572-585.

    Article  Google Scholar 

  • Rosenthal, S.L., 1962: A theoretical analysis of the field of motion in the hurricane boundary layer. Nat Hurr. Res. Proj. Rep., No. 56, 12pp.

    Google Scholar 

  • Schlichting, H., 1960: Boundary layer theory. 2nd Edition, McGraw Hill, London, Great Britain.

    Google Scholar 

  • Schloemer, R.W., 1954: Analysis and synthesis of hurricane wind patterns over Lake Okechobee, FL. Hydromet. Rep. 31, 49pp [Govt. Printing Office, No. C30.70:31].

    Google Scholar 

  • Shapiro, L.J., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40, 1984-1998.

    Article  Google Scholar 

  • Smith, R.K. 2003: A simple model of the hurricane boundary layer. Quart. J. Roy. Met. Soc., 129, 1007-1027.

    Article  Google Scholar 

  • Smith, R.K., 1968: The surface boundary layer of a hurricane. Tellus, 20, 473-484.

    Article  Google Scholar 

  • Vickery, P. J., P.F. Skerlj and L.A. Twisdale, 2000: Simulation of hurricane risk in the U.S. using empirical track model. J. of Structural Engineering, 126(10), 1222-1237.

    Article  Google Scholar 

  • Willoughby, H.E. and M.E. Rahn, 2004: Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Mon. Wea. Rev., 132, 3033-3048.

    Article  Google Scholar 

  • Willoughby, H.E., 1990: Gradient balance in tropical cyclones. J. Atmos. Sci., 47, 265-274.

    Article  Google Scholar 

  • Willoughby, H.E., 1991: Reply. J. Atmos. Sci., 48, 1209-1212.

    Article  Google Scholar 

  • Willoughby, H.E., J.A. Clos, M.G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex, J. Atmo. Sci., 39, 395-411.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Alexander S. Onassis Public Benefit Foundation under Scholarship No. F-ZA 054/2005-2006 and by ONR research grants N00014-03-1-0479 and N00014-04-6-0524. The authors are grateful to Melicie Desflots for providing the MM5 numerical simulations and to Robert Rogers and Jason Dunion for making available a code for Shapiro’s (1983) model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Langousis .

Editor information

Editors and Affiliations

Appendix A

Appendix A

Analytical expressions for the parameters in Eq. (15)

Let \( I_1 = \int\limits_0^\infty {f^2 d\eta } \), \( I_2 = \int\limits_0^\infty {\left( {1 - g^2 } \right)d\eta } \), \( I_3 = \int\limits_0^\infty {\left( {1 - g} \right)d\eta } \), \( I_4 = \int\limits_0^\infty {fgd\eta } \), \( I_5 = \int\limits_0^\infty {fd\eta } \), \( I_6 = \int\limits_0^\infty {\left( {g^2 - g} \right)d\eta } \) and \( I_7 = \int\limits_0^\infty {\left( {1 - g} \right)^2 d\eta } \), where f and g are the functions given in Eq. (11). Then

$$ \eqalign{& {{\partial f} \over {\partial \eta }}|_{\eta = 0} = a_2 - a_1 ,{{\partial g} \over {\partial \eta }}|_{\eta = 0} = a_1 - a_2 \cr & I_1 = {1 \over 8}\left( {a_1^2 + 2a_1 a_2 + 3a_2^2 } \right),I_2 = \left( {a_1 + a_2 } \right) - {1 \over 8}\left( {3a_1^2 + 2a_1 a_2 + a_2^2 } \right) \cr & I_3 = {{a_1 + a_2 } \over 2},I_4 = {1 \over 8}\left( {a_1^2 + 4a_1 a_2 + a_2^2 } \right) - {{a_1 + a_2 } \over 2} \cr & I_5 = - {{a_1 + a_2 } \over 2},I_6 = {1 \over 8}\left( {3a_1^2 + 2a_1 a_2 + a_2^2 } \right) - {{a_1 + a_2 } \over 2} \cr & I_7 = {1 \over 8}\left( {3a_1^2 + 2a_1 a_2 + a_2^2 } \right) \cr} $$
((A.1))

where a 1 and a 2 are calculated from Eq. (12). Under Eq.(A.1), the parameters A 1A 20 in Eq. (15) are given by

$$A_1 = E^2 [v_1 ^2 \cos ^2 \theta I_7 + (v_1 \sin \theta - v_{gr} )^2 I_1 + (I_5 - I_4 )(v_1^2 \sin 2\theta - 2v_t v_{gr} \cos \theta )]$$
((A.2))
$$A_2 = E[(v_t^2 \cos 2\theta + v_t v_{gr} \sin \theta )I_5 + ({\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}v_t^2 + ({\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}v_t^2 \sin 2\theta - v_t v_{gr} \cos \theta - {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}I_7 v_t^2 \sin 2\theta ]$$
((A.3))
$$A_3 = - v_t^2 I_1 \cos ^2 \theta + v_t^2 I_5 \sin 2\theta + (2v_t v_{gr} \cos \theta - v_t^2 \sin 2\theta )I_4 - v_t^2 I_7 \sin ^2 \theta + v_{gr} I_2 + 2v_t v_{gr} I_{_6 } \sin \theta $$
((A.4))
$$A_4 = v_t^2 I_1 \cos ^2 \theta - v_t^2 I_5 \sin 2\theta + (v_t^2 \sin 2\theta - 2v_t v_{gr} \cos \theta )I_4 + v_t^2 I_7 \sin ^2 \theta - 2v_t v_{gr} I_6 \sin \theta $$
((A.5))
$$A_5 = v_t I_5 \cos \theta + (v_{gr} - v_t \sin \theta )I_3 $$
((A.6))
$$ A_6 = E\left[ {v_t \cos \theta {{\partial g} \over {\partial \eta }}|_{\eta = 0} + \left( {v_{gr} - v_t \sin \theta } \right){{\partial f} \over {\partial \eta }}|_{\eta = 0} } \right] $$
((A.7))
$$A_7 = E[(v_{gr} - v_t \sin \theta )I_5 - v_t I_3 \cos \theta ],\,\,A_8 = - v_t \cos \theta I_5 + v_t I_3 \sin \theta $$
((A.8))
$$ A_9 = - v_t \cos \theta {{\partial f} \over {\partial \eta }}|_{\eta = 0} + \left( {v_{gr} - v_t \sin \theta } \right){{\partial g} \over {\partial \eta }}|_{\eta = 0} $$
((A.9))
$$A_{10} = 2E[v_t^2 I_7 \cos ^2 \theta + I_1 (v_{gr} - v_t \sin \theta )^2 + (v_t^2 \sin 2\theta - 2v_1 v_{gr} \cos \theta )(I_5 - I_4 )]$$
((A.10))
$$ A_{11} = E^2 \left[ {v_t^2 \cos ^2 \theta {{\partial I_7 } \over {\partial r}} - 2I_1 \left( {v_t \sin \theta - v_{gr} } \right){{\partial v_{gr} } \over {\partial r}} + \left( {v_{gr} - v_t \sin \theta } \right)^2 {{\partial I_1 } \over {\partial r}} - 2v_t \left( {I_5 - I_4 } \right){{\partial v_{gr} } \over {\partial r}}\cos \theta + \left( {v_t^2 \sin 2\theta - 2v_t v_{gr} \cos \theta } \right){{\partial \left( {I_5 - I_4 } \right)} \over {\partial r}}} \right] $$
((A.11))
$$A_{12} = (v_t^2 \cos 2\theta + v_t v_{gr} \sin \theta )I_5 + ({\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}v_t^2 \sin 2\theta - v_t v_{gr} \cos \theta )I_1 + (v_{gr} ^2 - 2v_t v_{gr} \sin \theta - v_t^2 \cos 2\theta )I_4 + v_t v_{gr} I_6 \cos \theta - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}v_t^2 I_7 \sin 2\theta $$
((A.12))
$$ A_{13} = E\left[ {\left( { - 2v_t^2 \sin 2\theta + v_t v_{gr} \cos \theta } \right)I_5 + \left( {v_t^2 \cos 2\theta + v_t v_{gr} \sin \theta } \right)\left( {{{\partial I_5 } \over {\partial \theta }} + I_1 } \right) + \left( {{1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}v_t^2 \sin 2\theta - v_t v_{gr} \cos \theta } \right){{\partial I_1 } \over {\partial \theta }} + \left( {2v_t^2 \sin 2\theta - 2v_t v_{gr} \cos \theta } \right)I_4 + \left( {v_{gr}^2 - 2v_t v_{gr} \sin \theta - v_t^2 \cos 2\theta } \right){{\partial I_4 } \over {\partial \theta }} - v_t v_{gr} I_6 \sin \theta + v_t v_{gr} \cos \theta {{\partial I_6 } \over {\partial \theta }} - v_t^2 I_7 \cos 2\theta - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}v_t^2 \sin 2\theta {{\partial I_7 } \over {\partial \theta }}} \right] $$
((A.13))
$$ A_{14} = E\left[ {v_t \sin \theta I_5 {{\partial v_{gr} } \over {\partial r}} + \left( {v_t^2 \cos 2\theta + v_t v_{gr} \sin \theta } \right){{\partial I_5 } \over {\partial r}} - v_t {{\partial v_{gr} } \over {\partial r}}I_1 \cos \theta + \left( {{1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}v_t^2 \sin 2\theta - v_t v_{gr} \cos \theta } \right){{\partial I_1 } \over {\partial r}} + 2I_4 \left( {v_{gr} - v_t \sin \theta } \right){{\partial v_{gr} } \over {\partial r}} + I_6 v_t \cos \theta {{\partial v_{gr} } \over {\partial _r }} + \left( {v_{gr}^2 - 2v_t v_{gr} \sin \theta - v_t^2 \cos 2\theta } \right){{\partial I_4 } \over {\partial r}} + v_t v_{gr} \cos \theta {{\partial I_6 } \over {\partial r}} - {1 \mathord{\left/{\vphantom {1 2}} \right.\kern-\nulldelimiterspace} 2}v_t^2 \sin 2\theta {{\partial I_7 } \over {\partial r}}} \right] $$
((A.14))
$$ A_{15} = - v_t^2 \sin 2\theta + v_t^2 \cos ^2 \theta {{\partial I_1 } \over {\partial \theta }} - 2v_t^2 I_5 \cos 2\theta - v_t^2 \sin 2\theta {{\partial I_5 } \over {\partial \theta }} + \left( {2v_t^2 \cos 2\theta + 2v_t v_{gr} \sin \theta } \right)I_4 + \left( {v_t^2 \sin 2\theta - 2v_t v_{gr} \cos \theta } \right){{\partial I_4 } \over {\partial \theta }} + v_t^2 I_7 \sin 2\theta + v_t^2 \sin ^2 \theta {{\partial I_7 } \over {\partial \theta }} - 2v_t v_{gr} \sin \theta {{\partial I_6 } \over {\partial \theta }} $$
((A.15))
$$A_{16} = (v_{gr} - v_t \,\sin \theta )I_5 - v_t \,I_3 \cos \theta $$
((A.16))
$$ A_{17} = E\left[ {I_5 {{\partial v_{gr} } \over {\partial r}} + \left( {v_{gr} - v_t \sin \theta } \right){{\partial I_5 } \over {\partial r}} - v_t \cos \theta {{\partial I_3 } \over {\partial r}}} \right] $$
((A.17))
$$ A_{180} = v_t I_5 \sin \theta - v_t \cos \theta {{\partial I_5 } \over {\partial \theta }} + v_t I_3 \cos \theta + v_t \sin \theta {{\partial I_3 } \over {\partial \theta }} $$
((A.18))
$$ A_{19} = v_{gr}^2 I_6 ,A_{20} = v_{gr} {{\partial I_6 } \over {\partial \theta }} $$
((A.19))

In Eq. (A.2)-(A.19), the derivatives \( {{\partial I_j } \over {\partial r}} \) and \( {{\partial I_j } \over {\partial \theta }} \) for j=1,..,7 can be calculated analytically using the chain rule

$$ {{\partial I_j } \over {\partial s}} = {{\partial I_j } \over {\partial a_1 }}{{\partial a_1 } \over {\partial s}} + {{\partial I_j } \over {\partial a_2 }}{{\partial a_2 } \over {\partial s}},j = 1,..,7 $$
((A.20))

where s is either s or θ and \( {{\partial a_1 } \over {\partial s}} \) and \( {\partial a_2 } \over {\partial s} \) can be analytically derived from Eq. (12) and (13).

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Langousis, A., Veneziano, D., Chen, S. (2009). Boundary Layer Model for Moving Tropical Cyclones. In: Elsner, J., Jagger, T. (eds) Hurricanes and Climate Change. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09410-6_15

Download citation

Publish with us

Policies and ethics