Skip to main content

Response of Tropical Cyclogenesis to Global Warming in an IPCC AR4 Scenario

  • Chapter
  • First Online:
Hurricanes and Climate Change

Abstract

Since currently very few models can reach the high resolutions necessary for a detailed representation of tropical cyclones, most assessments of their response to climate change in coupled scenarios have to be based on indirect estimates of the hurricane activity potential. A modified Convective Yearly Genesis Potential index (CYGP) proposed by Royer et al. (1998) is applied here to the analysis of TC genesis in 15 coupled general circulation models (CGCMs) that have run simulations for the IPCC AR4 for the 20th century and for scenario A2. For the current climate most of the models simulate rather realistic patterns of cyclogenesis, though the TC genesis in the different ocean basins differs from model to model. The cyclogenesis index shows interdecadal fluctuations and long term trends. In scenario A2 the patterns of response of cyclogenesis at the end of the 21st century differ according to the ocean basins and models. While in some ocean basins like the Indian Ocean, the majority of models compute an increasing trend in TC genesis, the response is less coherent in other basins where some models give a decreasing trend. The lack of coherence of the TC genesis response to future climate change can be associated to the different response patterns of sea surface temperatures (SST) in the coupled models, particularly over the Equatorial Pacific, and to their differences in the simulation of ENSO. Until some better convergence of the model SST response has been achieved, it seems rather premature to draw conclusions about possible future changes in TC genesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    see information at: http://www-pcmdi.llnl.gov/ipcc/data_status_tables.htm

References

  • Bengtsson, L., H. Böttger, and M. Kanamitsu, 1982: Simulation of hurricane-type vortices in a general circulation model. Tellus, 34, 440–457.

    Article  Google Scholar 

  • Bengtsson, L., M. Botzet, and M. Esch, 1995: Hurricane-type vortices in a general circulation model. Tellus (Ser. A), 47, 175–196.

    Article  Google Scholar 

  • Bengtsson, L., M. Botzet, and M. Esch, 1996: Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus (Ser. A), 48, 57–73.

    Article  Google Scholar 

  • Broccoli, A. J., and S. Manabe, 1990: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys. Res. Lett., 17, 1917–1920.

    Article  Google Scholar 

  • Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel, 2007: Tropical cyclone genesis potential index in climate models. Tellus (Ser. A), 59, 428–443.

    Article  Google Scholar 

  • Chauvin, F., J. F. Royer, and M. Déqué, 2006: Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Climate Dyn., 27, 377–399.

    Article  Google Scholar 

  • Collins, M., 2005: El Nino- or La Nina-like climate change? Climate Dyn., 24, 89–104. and the CMIP Modelling Groups,

    Article  Google Scholar 

  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 4605–4630.

    Article  Google Scholar 

  • Druyan, L. M., P. Lonergan, and T. Eichler, 1999: A GCM investigation of global warming impacts relevant to tropical cyclone genesis. Int. J. Climatol., 19, 607–617.

    Article  Google Scholar 

  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143–1155.

    Article  Google Scholar 

  • Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665–669.

    Article  Google Scholar 

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Weather Rev., 96, 669–700.

    Article  Google Scholar 

  • Gray, W. M., 1975: Tropical Cyclone Genesis. Dept. of Atmospheric Science Paper No. 234, Colorado State University, 121 pp.

    Google Scholar 

  • Gualdi, S., E. Scoccimarro, and A. Navarra, 2008: Changes in tropical cyclone activity due to global warming. Results from a high resolution coupled general circulation model. J. Climate doi: 10.1175/2008JCLI1921.1.

    Google Scholar 

  • Guilyardi, E., 2006: El Nino-mean state-seasonal cycle interactions in a multi-model ensemble. Climate Dyn., 26, 329–348.

    Article  Google Scholar 

  • Haarsma, R. J., J. F. B. Mitchell, and C. A. Senior, 1993: Tropical disturbances in a GCM. Climate Dyn., 8, 247–257.

    Article  Google Scholar 

  • Henderson-Sellers, A., H. Zhang, G. Berz, K. Emanuel, W. Gray, C. Landsea, G. Holland, J. Lighthill, S. L. Shieh, P. Webster, and K. McGuffie, 1998: Tropical cyclones and global climate change: A post-IPCC assessment. Bull. Amer. Meteorol. Soc., 79, 19–38.

    Article  Google Scholar 

  • Klotzbach, P. J., 2006: Trends in global tropical cyclone activity over the past twenty years (1986-2005). Geophys. Res. Lett., 33, L10805.

    Article  Google Scholar 

  • Knutson, T. R., and R.E. Tuleya, 1999: Increased hurricane intensities with CO2-induced warming as simulated using the GFDL hurricane prediction system. Climate Dyn., 15, 503–519.

    Article  Google Scholar 

  • Knutson, T. R., and R.E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17, 3477–3495.

    Article  Google Scholar 

  • Knutson, T. R., R. E. Tuleya, and Y. Kurihara, 1998: Simulated increase of hurricane intensities in a CO2-warmed climate. Science, 279, 1018–1020.

    Article  Google Scholar 

  • Kobayashi, C., and M. Sugi, 2004: Impact of horizontal resolution on the simulation of the Asian summer monsoon and tropical cyclones in the JMA global model. Climate Dyn., 23, 165–176.

    Article  Google Scholar 

  • Kossin, J. P., K. R. Knapp, D. J. Vimont, R. J. Murnane, and B. A. Harper, 2007: A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett., 34, L04815.

    Article  Google Scholar 

  • Krishnamurti, T. N., R. Correa-Torres, M. Latif, and G. Daughenbaugh, 1998: The impact of current and possibly future sea surface temperature anomalies on the frequency of Atlantic hurricanes. Tellus (Ser. A), 50, 186–210.

    Article  Google Scholar 

  • Latif, M., N. Keenlyside, and J. Bader, 2007: Tropical sea surface temperature, vertical wind shear, and hurricane development. Geophys. Res. Lett., 34, L01710.

    Article  Google Scholar 

  • Lin, J. L., 2007a: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J. Climate, 20, 4497–4525.

    Article  Google Scholar 

  • Lin, J. L., 2007b: Interdecadal variability of ENSO in 21 IPCC AR4 coupled GCMs. Geophys. Res. Lett., 34, L12702.

    Google Scholar 

  • Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805.

    Google Scholar 

  • Manabe, S., J. L. Holloway Jr., and H. M. Stone, 1970: Tropical circulation in a time-integration of a global model of the atmosphere. J. Atmos. Sci., 27, 580–613.

    Article  Google Scholar 

  • McDonald, R. E., D. G. Bleaken, D. R. Cresswell, V. D. Pope, and C. A. Senior, 2005: Tropical storms: Representation and diagnosis in climate models and the impacts of climate change. Climate Dyn., 25, 19–36.

    Article  Google Scholar 

  • Mechoso, C. R., A. W. Robertson, N. Barth, M. K. Davey, P. Delecluse, P. R. Gent, S. Ineson, B. Kirtman, M. Latif, H. Le Treut, T. Nagai, J. D. Neelin, S. G. H. Philander, J. Polcher, P. S. Schopf, T. Stockdale, M. J. Suarez, L. Terray, O. Thual, and J.J. Tribbia, 1995: The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models. Mon. Weather Rev., 123, 2825–2838.

    Article  Google Scholar 

  • Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, 2006: Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteorol. Soc. Japan, 84, 259–276.

    Article  Google Scholar 

  • Palmén, E., 1948: On the formation and structure of tropical cyclones. Geophysica, 3, 26–38.

    Google Scholar 

  • Pezza, A. B., and I. Simmonds, 2005: The first South Atlantic hurricane: Unprecedented blocking, low shear and climate change. Geophys. Res. Lett., 32, L15712.

    Article  Google Scholar 

  • Pielke, R. A. Jr., C. Landsea, M. Mayfield, J. Laver, and R. Pasch, 2005: Hurricanes and global warming. Bull. Amer. Meteorol. Soc., 86, 1571–1575.

    Article  Google Scholar 

  • Royer, J. F., F. Chauvin, B. Timbal, P. Araspin, and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Climatic Change, 38, 307–343.

    Article  Google Scholar 

  • Ryan, B. F., I. G. Watterson, and J. L. Evans, 1992: Tropical cyclone frequencies inferred from Gray's yearly genesis parameter: Validation of GCM tropical climates. Geophys. Res. Lett., 19, 1831–1834.

    Article  Google Scholar 

  • Santer, B. D., T. M. L. Wigley, P. J. Gleckler, C. Bonfils, M. F. Wehner, K. AchutaRao, T. P. Barnett, J. S. Boyle, W. Bruggemann, M. Fiorino, N. Gillett, J. E. Hansen, P. D. Jones, S. A. Klein, G. A. Meehl, S. C. B. Raper, R. W. Reynolds, K. E. Taylor, and W. M. Washington, 2006: Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions. Proc. Natl Acad. Sci. USA, 103, 13905–13910.

    Article  Google Scholar 

  • Stowasser, M., Y. Q. Wang, and K. Hamilton, 2007: Tropical cyclone changes in the western North Pacific in a global warming scenario. J. Climate, 20, 2378–2396.

    Article  Google Scholar 

  • Sugi, M., A. Noda, and N. Sato, 2002: Influence of the global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteorol. Soc. Japan, 80, 249–272.

    Article  Google Scholar 

  • Tsutsui, J. I., 2002: Implications of anthropogenic climate change for tropical cyclone activity: A case study with the NCAR CCM2. J. Meteorol. Soc. Japan, 80, 45–65.

    Article  Google Scholar 

  • Tsutsui, J. I., and A. Kasahara, 1996: Simulated tropical cyclones using the National Center for Atmospheric Research Community Climate Model. J. Geophys. Res. - Atmos., 101, 15013–15032.

    Article  Google Scholar 

  • Uppala, S. M., P. W. Kallberg, A. J. Simmons, U. Andrae, V. D. Bechtold, M. Fiorino, J. K. Gibson, J. Haseler, A. Hernandez, G. A. Kelly, X. Li, K. Onogi, S. Saarinen, N. Sokka, R. P. Allan, E. Andersson, K. Arpe, M. A. Balmaseda, A. C. M. Beljaars, L. Van De Berg, J. Bidlot, N. Bormann, S. Caires, F. Chevallier, A. Dethof, M. Dragosavac, M. Fisher, M. Fuentes, S. Hagemann, E. Holm, B. J. Hoskins, L. Isaksen, P. A. E. M. Janssen, R. Jenne, A. P. McNally, J. F. Mahfouf, J. J. Morcrette, N. A. Rayner, R. W. Saunders, P. Simon, A. Sterl, K. E. Trenberth, A. Untch, D. Vasiljevic, and P. Viterbo, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteorol. Soc., 131 2961–3012(Part B),.

    Article  Google Scholar 

  • van Oldenborgh, G. J., S. Y. Philip, and M. Collins, 2005: El Niño in a changing climate: a multi-model study. Ocean Sci., 1, 81–95.

    Article  Google Scholar 

  • Vecchi, G. A., and B. J. Soden, 2007: Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett., 34, L08702.

    Article  Google Scholar 

  • Vitart, F., J. L. Anderson, and W. F. Stern, 1997: Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate, 10, 745–760.

    Article  Google Scholar 

  • Walsh, K., 2004: Tropical cyclones and climate change: Unresolved issues. Clim. Res., 27, 77–83.

    Article  Google Scholar 

  • Walsh, K. J. E., and B. F. Ryan, 2000: Tropical cyclone intensity increase near Australia as a result of climate change. J. Climate, 13, 3029–3036.

    Article  Google Scholar 

  • Walsh, K. J. E., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined resolution-dependent threshold criteria for the detection of tropical cyclones in climate models and reanalyses. J. Climate, 20, 2307–2314.

    Article  Google Scholar 

  • Watterson, I. G., J. L. Evans, and B. F. Ryan, 1995: Seasonal and interannual variability of tropical cyclogenesis: Diagnostics from large-scale fields. J. Climate, 8, 3052–3066.

    Article  Google Scholar 

  • Webster, P. J., G. J. Holland, J. A. Curry, and H.R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844–1846.

    Article  Google Scholar 

  • Yamaguchi, K., and A. Noda, 2006: Global warming patterns over the North Pacific: ENSO versus AO. J. Meteorol. Soc. Japan, 84, 221–241.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the modeling groups and the PCMDI for making the model data available. The IPCC Data Archive at Lawrence Livermore National Laboratory is supported by the U.S. Department of Energy (DOE) Office of Sciences. We acknowledge support from the European Commission 6th Framework Programme (Project ENSEMBLES, contract GOCE-CT-2003-505539), and the French Agence Nationale de la Recherche (ANR Project Cyclones8Climate)

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Royer, JF., Chauvin, F. (2009). Response of Tropical Cyclogenesis to Global Warming in an IPCC AR4 Scenario. In: Elsner, J., Jagger, T. (eds) Hurricanes and Climate Change. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-09410-6_12

Download citation

Publish with us

Policies and ethics