Skip to main content

The Plasma Environment of Mars

  • Chapter

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 18))

Abstract

When the supersonic solar wind reaches the neighborhood of a planetary obstacle it decelerates. The nature of this interaction can be very different, depending upon whether this obstacle has a large-scale planetary magnetic field and/or a well-developed atmosphere/ionosphere. For a number of years significant uncertainties have existed concerning the nature of the solar wind interaction at Mars, because of the lack of relevant plasma and field observations. However, measurements by the Phobos-2 and Mars Global Surveyor (MGS) spacecraft, with different instrument complements and orbital parameters, led to a significant improvement of our knowledge about the regions and boundaries surrounding Mars.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acuña, M. H. et al.: 1992, ‘Mars Observer Magnetic Fields Investigation’, J. Geophys. Res. 97, 7799.

    Article  ADS  Google Scholar 

  • Acuña, M. H. et al.: 1998, ‘Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission’, Science 279, 1676.

    Article  ADS  Google Scholar 

  • Acuña, M. H. et al.: 1999, ‘Global Distribution of Crustal Magnetization Discovered by the Mars Global Surveyor MAG/ER Experiment’, Science 284, 790.

    Article  ADS  Google Scholar 

  • Acuña, M. H., Connerney, J. E. P., Ness, N. F., Lin, R. P., Mitchell, D., Carlson, C. W., McFadden, J., Anderson, K. A., Rème, H., Mazelle, C., Vignes, D., Wasilewski, P. and Cloutier, P.: 2001, ‘The Magnetic Field of Mars: Summary of Results From the Aerobraking and Mapping Orbits’, J. Geophys. Res. 106, 23403.

    Article  ADS  Google Scholar 

  • Albee, A. L., Palluconi, F. D. and Arvidson, R. A.: 1998, ‘Mars Global Surveyor mission: Overview and Status’, Science 279, 1671.

    Article  ADS  Google Scholar 

  • Alfvén, H.: 1957, ‘On the Theory of Comet Tails’, Tellus 9, 92.

    Article  ADS  Google Scholar 

  • Alexander, C. J. and Russell C. T.: 1985, ‘Solar Cycle Dependence of the Location of the Venus Bow Shock’, Geophys. Res. Lett. 12, 369.

    Article  ADS  Google Scholar 

  • Arkani-Hamed, J.: 2001, ‘A 50-degree Spherical Harmonic Model of the Magnetic Field of Mars’, J. Geophys. Res. 106, 23197.

    Article  ADS  Google Scholar 

  • Axford W. I.: 1991, ‘A Commentary on Our Present Understanding of the Martian Magnetosphere’, Planetary Space Sci. 39, 167.

    Article  ADS  Google Scholar 

  • Barabash, S. et al.: 1995, ‘Diagnostic of Energetic Neutral Particles at Mars by the ASPERA-C Instrument For the Mars 96 Mission’, Adv. Space Res. 16, (4)81.

    Article  ADS  Google Scholar 

  • Barabash, S., Holmström, M., Lukyanov, A. and Kallio, E.: 2002, ‘Energetic Neutral Atoms at Mars IV: Imaging of Planetary Oxygen, J. Geophys. Res. 107 (A10), 1280.

    Article  Google Scholar 

  • Bauer, S. J.: 1973, Physics of Planetary Ionospheres, Springer-Verlag, New York.

    Book  Google Scholar 

  • Bauer, S. J. and Hantsch, M. H.: 1989, ‘Solar Cycle Variations of the Upper Atmosphere Temperatur of Mars’, Geophys. Res. Lett. 16, 373.

    Article  ADS  Google Scholar 

  • Bauer, S. J.: 1999, ‘Mars Upper Atmosphere: Response to Solar Activity’, Anzeiger Abt. II 136, 19.

    Google Scholar 

  • Baumgärtel K. and Sauer, K.: 1992, ‘Interaction of a Magnetized Plasma Stream with an Immobile Ion Cloud’, Ann. Geophys. 10, 763–771.

    ADS  Google Scholar 

  • Bertucci, C., Mazelle, C., Crider, D. et al., 2002, ‘Magnetic Field Line Draping Enhancement across the Martian Magnetic Pileup Boundary’, EGU Meeting, Nice, France.

    Google Scholar 

  • Bertucci, C., Mazelle, C., Vignes, D., Crider, D. H., Acuña, M. H., Connerney, J. E. P., Mitchell, D. L., Lin, R. P., Rème, H., Cloutier, R. A., Ness, N. F. and Winterhalter, D.: 2003a, ‘Magnetic Field Draping Enhancement at the Magnetic Pileup Boundary from Mars Global Surveyor’, Observations, Geophys. Res. Lett. 30(2), 1099, 10.1029/2002 GL015713.

    Article  ADS  Google Scholar 

  • Bertucci, C., Mazelle, C., Slavin, J. A., Russell, C. T. and Acuna, M. H., 2003b, Magnetic Field Draping Enhancement at Venus; Evidence of Magnetic Pileup Boundary, Geophys. Res. Lett. 30(17), 1876, doi: 10.1029/2003 GL017271.

    Article  ADS  Google Scholar 

  • Bezrukikh, V. V., Verigin, M. I. and Shutte, N. M.: 1978, ‘On the Disclosure of the Heavy Ions in the Region of the Solar Wind Interaction with Mars planet, Kosmicheskie Issledovaniya (Space Research)’, 16(4), 583–587, (in Russian).

    ADS  Google Scholar 

  • Bougher, S. W., Engel, S., Hinson, D. P. and Forbes, J. M.: 2001, Mars Global Surveyor Radio Science Electron Density Profiles: Neutral Atmosphere Implications’, Geophys. Res. Lett. 16, 3091.

    Article  ADS  Google Scholar 

  • Brace, L. H. and Kliore, A. J.: 1991, ‘The Structure of the Venus Ionosphere’, Space Sci. Rev. 55, 81.

    Article  ADS  Google Scholar 

  • Brain, D. A. et al.: 2003, ‘Reconnection of Martian Crustal Magnetic Fields to the Solar Wind’, J. Geophys. Res. 108 (A12),1424,10.1029/2002 JA009482.

    Google Scholar 

  • Brannon, J. F., Fox, J. L. and Porter, H. S.: 1993, ‘Evidence for Day-to Night Transport at Low Solar Activity in the Venus pre-dawn Ionosphere’, Geophys. Res. Lett. 20, 2739.

    Article  ADS  Google Scholar 

  • Brecht, S. H. and Thomas, V. A.: 1988, ‘Multidimensional Simulations Using Hybrid Particle Codes’, Comp. Phys. Comm. 48, 135.

    Article  ADS  Google Scholar 

  • Brecht, S. H. and Ferrante, J. R.: 1991, ‘Global Hybrid Simulation of Unmagnetized Planets: Comparison of Venus and Mars, J. Geophys. Res. 96, 11209.

    Article  ADS  Google Scholar 

  • Brecht, S. H., Ferrante, J. R. and Luhmann, J. G.: 1993, ‘Three-dimensional Simulations of the Solar Wind Interaction With Mars’, J. Geophys. Res. 98, 1345.

    Article  ADS  Google Scholar 

  • Brecht, S. H.: 1997a, ‘Hybrid Simulations of the Magnetic Topology of Mars, J. Geophys. Res. 102, 4743.

    Article  ADS  Google Scholar 

  • Brecht, S. H.: 1997b. H.: 1997b, ‘Solar Wind Proton Deposition into the Martian Atmosphere’, J. Geophys. Res. 102, 11287.

    Google Scholar 

  • Brecht, S. H.: 2002, ‘Numerical Techniques Associated with Simulations of Solar Wind Interactions with Non-Magnetized Bodies’, Comparative Aeronomy in The Solar System, eds. M. Mendillo, A. Nagy and H. Waite, American Geophysical Union, Washington.

    Google Scholar 

  • Breus, T. K., Krymskii, A. M., Lundin, R., Dubinin, E. M., Luhmann, J. G., Yeroshenko, Ye. G., Barabash, S. V., Mitnitskii, V. Ya., Pissarenko, N. F. and Styashkin, V. A.: 1991, ‘The Solar Wind Interaction with Mars: Consideration of Phobos 2 Mission Observations of an Ion Composition Boundary on the Dayside’, J. Geophys. Res. 96, 11165–11174.

    Article  ADS  Google Scholar 

  • Breus, T. K. and Krymskii, A. M.: 1992, ‘Turbulent Pick-up of New-born Ions near Venus and Mars and Problems of Numerical Modelling of the Solar Wind Interaction with These Planets. –I. Features of the Solar Wind Interaction with Planets’, Planetary Space Sci. 40, 121.

    Article  ADS  Google Scholar 

  • Breus, T. K. et al.: 1992, ‘Turbulent Pick-up of New-born Ions Near Venus and Mars and Problems of Numerical Modelling of the Solar Wind Interaction with These Planets. –II. Two-fluid HD-model’, Planetary Space Sci. 40, 131.

    Article  ADS  Google Scholar 

  • Breus, T. K. et al.: 1998, ‘Conditions in the Martian Ionosphere/atmosphere from a Comparison of a Thermospheric Model with Radio Occultation Data’, Planetary Space Sci. 46, 367.

    Article  ADS  Google Scholar 

  • Bryant D., Krimigis, S. M. and Haerendel, G.: 1985, IEEE Trans. Geosc. Remote Sensing GE-23, 177.

    Google Scholar 

  • Chen, R. H., Cravens, R. E. and Nagy, A. F.: 1978, ‘The Martian Ionosphere in Light of the Viking Observations’, J. Geophys. Res. 83, 3871.

    Article  ADS  Google Scholar 

  • Chen, Y, Cloutier, P. A., Crider, D. H., Mazelle, C. and Rème, H.: 2001, ‘On the Role of Charge Exchange in the Formation of the Martian Magnetic Pileup Boundary’, J. Geophys. Res. 106, 29387.

    Article  ADS  Google Scholar 

  • Choi, Y. W. et al.: 1998, ‘Effect of the Magnetic Field on the Energetics of Mars’s Ionosphere’, Geophys. Res. Lett. 25, 2753.

    Article  ADS  Google Scholar 

  • Cloutier P. A. and Daniell, R. E. and Butler: 1973, ‘Ionospheric Currents Induced by Solar Wind Interaction with Planetary Atmospheres’, Planetary Space Sci. 21, 463.

    Article  ADS  Google Scholar 

  • Cloutier, P. A. and Daniell, R. E.: 1979, ‘An Electrodynamic Model of the Solar Wind Interaction with the Ionospheres of Mars and Venus’, Planetary Space Sci. 27, 1111.

    Article  ADS  Google Scholar 

  • Cloutier, P. A. et al.: 1999, ‘Venus-like Interaction of the Solar Wind with Mars’, Geophys. Res. Lett. 26, 2685.

    Article  ADS  Google Scholar 

  • Connerney, J. E. P. et al.: 1999, ‘Magnetic Lineations in the Ancient Crust of Mars, Science 284, 794.

    Article  ADS  Google Scholar 

  • Cravens, T. E., Gombosi, T. I., Kozyra, J. U., Nagy, A. F., Brace L. H. and Knudsen, W. C.: 1980, ‘Model Calculations of the Dayside Ionosphere of Venus: Energetics, J. Geophys. Res. 85, 7778.

    Google Scholar 

  • Cravens, T. E.: 1991, Ionospheric models for Venus and Mars, p. 277 in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, Geophysical Monograph 66, American Geophysical Union, Washington DC.

    Google Scholar 

  • Cravens, T. E., Shinagawa, H. and Luhmann, J. G.: 1997, in S. Bougher, D. Hunten, and R. Phillips (eds.), Magnetohydrodynamic Processes: Magnetic Fields in the Ionosphere of Venus, Venus II, University of Arizona Press, Tucson, pp. 61–93.

    Google Scholar 

  • Cravens, T. E.: 2000, ‘X-ray Emission from Comets and Planets’, Adv. Space Res. 26, 1443.

    Article  ADS  Google Scholar 

  • Cravens, T. E. and Maurellis, A. N.: 2001, ‘X-ray Emission from Scattering and Fluorescence of Solar X-rays at Venus and Mars’. Geophys. Res. Lett. 28, 3043.

    Article  ADS  Google Scholar 

  • Cravens, T. E., Hoppe, A., Ledvina, S. A. and McKenna-Lawlor, S.: 2002, ‘Pickup Ions near Mars Associated with Escaping Oxygen Atoms’, J. Geophys. Res. 107.

    Google Scholar 

  • Crider, D. H. et al.: 2000, ‘Evidence for Electron Impact Ionization in the Magnetic Pile-up Boundary of Mars’, Geophys. Res. Lett. 27, 45.

    Article  ADS  Google Scholar 

  • Crider, D. H., Acuña, M., Connerney, J. et al.: 2001, ‘Magnetic Field Draping Around Mars: Mars Global Surveyor Results’, Adv. Space Res. 27(11), 1831.

    Article  ADS  Google Scholar 

  • Crider, D. H., Acuña, M. H., Connerney, J. E. P., Mitchell, D. L., Lin, R. P., Cloutier, P. A., Rème, H., Mazelle, C., Brain, D., Ness, N. F., and Bauer, S.: 2002, ‘Observations of the Latitude Dependence of the Location of the Martian Magnetic Pileup Boundary’, Geophys. Res. Lett. 29(8), 10.1029/2001 GL013860.

    Article  Google Scholar 

  • Crider, D. H. et al.: 2002, ‘Mars Global Surveyor Observations of Solar Wind Magnetic Field Draping Around Mars’, Space Sci. Rev. 111(1–2), 203–221.

    Google Scholar 

  • Crider, D. H., Vignes, D., Krymskii, A. M., Breus, T. K., Ness, N. F., Mitchell, D. L., Slavin, J. A. and Acuña, M. H.: 2003, ‘A Proxy for Determining Solar Wind Dynamic Pressure at Mars using Mars Global Surveyor Data’, J. Geophys. Res. 108 (A12): 1461, 10.1029/2003 JA009875.

    Article  Google Scholar 

  • Dennerl, K.: 2001, ‘Discovery of X-rays from Venus with Chandra. In ‘High Energy Universe at Sharp Focus: Chandra Science’. Proceedings of a conference held in St. Paul, MN, 16–18 July 2001. ASP Conference Series.

    Google Scholar 

  • Dennerl, K.: 2002, ‘Discovery of X-rays from Mars with Chandra, Astron. Astrophys., 394, 1119 doi: 10.1051/0004–6361: 20021116.

    Google Scholar 

  • Dobe, Z., Nagy, A. F. and Fox, J. L.: 1995, ‘A Theoretical Study Concerning the Solar Cycle

    Google Scholar 

  • Dependence of the Nightside Ionosphere of Venus’, J. Geophys. Res. 100, 14507.

    Google Scholar 

  • Dolginov Sh., Yeroshenko, Ye. G. and Zhuzgov, D. N.: 1976a, ‘Magnetic Field of Mars According to Data Mars-3 and Mars-5 Satellites’, J. Geophys. Res. 81, 3353.

    Article  ADS  Google Scholar 

  • Dolginov, Sh., Yeroshenko, Ye. G., Zhuzgov, L. N. Sharova, V. A., Gringauz, K. I., Bezrukikh, V. V., Breus, T. K., Verigin, M. I. and Remizov, A. P.: 1976b, in N. F. Ness (ed.), ‘Magnetic Field and Plasma Inside and Outside of the Martian Magnetosphere’, Solar Wind Interaction with the Planets Mercury, Venus, and Mars, NASA SP-397, 1–20.

    Google Scholar 

  • Dubinin, E. and Podgorny, I. M.: 1980, ‘Combined magnetosphere’, Cosmic Research, Engl. Transl. 18, 470.

    Google Scholar 

  • Dubinin, E. M., Lundin, R., Norberg, O. and Pissarenko, N.: 1993a, ‘Ion Acceleration in the Martian Tail: The Phobos Observations, J. Geophys. Res. 98, 3991.

    Google Scholar 

  • Dubinin, E. M., Lundin, R., Koskinen, H. and Norberg, O.: 1993b, ‘Cold Ions at the Bow Shock: Phobos Observations’, J. Geophys. Res. 98, 5617.

    Article  ADS  Google Scholar 

  • Dubinin E. M., Lundin, R. and Schwingenschuh, K.: 1994, ‘Solar Wind Electrons as Tracers of the Martian Magnetotail Topology, J. Geophys. Res. 99, 2 1233.

    Google Scholar 

  • Dubinin E. M., Obod, D., Lundin, R., Schwngenschuh, K. and Grard, R.: 1995, ‘Some Features of the Martian Bow Shock’, Adv. Space Res. 15 (8/9), 423.

    Article  ADS  Google Scholar 

  • Dubinin E. M., Sauer, K., Lundin, R., Baumgartel, K. and Bogdanov, A.: 1996a, ‘Structuring of the Transition Region (Plasma Mantle) of the Martian Magnetosphere’, Geophys. Res. Lett. 23, 785.

    Article  ADS  Google Scholar 

  • Dubinin, E. M. et al.: 1996b, ‘Plasma Characteristics of the Boundary Layer in the Martian Magnetosphere’, J. Geophys. Res. 101, 27,061.

    Google Scholar 

  • Dubinin E. M., Sauer, K., Baumgartel, K. and Srivastava, K.: 1998, ‘Multiple Shocks Near Mars’, Earth Planets Space 50, 279.

    ADS  Google Scholar 

  • Dubinin E. M. and Sauer, K.: 1999, ‘The Martian Magnetosphere-A Laboratory for Bi-ion Plasma Investigation’, Astrophys Space Sci. 264, 273.

    Article  ADS  Google Scholar 

  • Dubinin E. M., Sauer, K., McKenzie, J. F. and Chanteur, G.: 2002, ‘Nonlinear Waves and Solitons Propagating Perpendicular to the Magnetic Field in Bi-ion Plasma with Finite Plasma Pressure’, Nonlinear Processes Geophys. 9 (2), 87.

    Article  ADS  Google Scholar 

  • Eastman, T. E., DeCoster, R. J. and Frank, L. A.: 1986, ‘Velocity Distributions of Ion Beams in the Plasma Sheet Boundary Layer, in Ion Acceleration in the Magnetosphere and Ionosphere, Geophysical Monograph 38, AGU, pp. 117, Washington D.C..

    Google Scholar 

  • Eastwood, J. W.: 1972, ‘Consistency of Fields and Particle Motion in the ‘Speiser’ Model of the Current Sheet’, Planetary Space Sci. 20, 1555.

    Article  ADS  Google Scholar 

  • Elphic, R. C. et al.: 1980, ‘Observations of the Dayside Ionopause and Ionosphere of Venus’, J. Geophys. Res. 85, 7679.

    Google Scholar 

  • Eshleman, V. R.: 1970, ‘Atmospheres of Mars and Venus: A Review of Mariner 4 and 5 and Venera 4 Experiments’, Radio Sci. 5, 325.

    Article  ADS  Google Scholar 

  • Fjeldbo, G. and Eshleman, V. R.: 1968, ‘The Atmosphere of Mars Analyzed by Integral Inversion of the Mariner 4 Occulation Data’, Planetary Space Sci. 16, 1035.

    Article  ADS  Google Scholar 

  • Fox, J. L. and Dalgarno, A.: 1979, ‘Ionization, Luminosity, and Heating of the Upper Atmosphere of Mars’, J. Geophys. Res. 84, 7315.

    Article  ADS  Google Scholar 

  • Fox, J. L.: 1993, ‘The Production and Loss of Nitrogen Atoms on Mars’, J. Geophys. Res. 98, 3297.

    Article  ADS  Google Scholar 

  • Fox, J. L.: 1996, in G. W. F. Drake (ed.), ‘Aeronomy’, Atomic, Molecular, and Optical Physics Handbook, 940, Am. Institute Phys. Press, Woodbury, NY.

    Google Scholar 

  • Fox, J. L.: 1997, ‘Upper Limits to the Outflow of Ions at Mars: Implications for Atmospheric Evolution’, Geophys. Res. Lett. 24, 2901.

    Article  ADS  Google Scholar 

  • Fox, J. L. and Stewart, A. I. F.: 1991, ‘The Venus Ultraviolet Aurora a Soft Electron Source’, J. Geophys. Res. 96, 9829.

    Article  ADS  Google Scholar 

  • Fox, J. L. and Hac, A.: 1997, ‘Spectrum of Hot O at the Exobase of the Terrestrial Planets’, J. Geophys. Res. 102, 24005.

    Article  ADS  Google Scholar 

  • Gan, L., Cravens, T. E. and Horanyi, M.: 1990, ‘Electrons in the Ionopause Boundary Layer of Venus’, J. Geophys. Res. 95, 19023.

    Article  ADS  Google Scholar 

  • Gombosi T. I. et al.: 1981, ‘The Role of Charge-exchange in the Solar Wind Absorption by Venus4, Geophys. Res. Lett. 8, 1265.

    Google Scholar 

  • Grard, R., Pedersen, A., Klimov, S., Savin, S., Skalsky, A., Trotignon, J. G. and Kennel, C.: 1989, ‘First Measurements of Plasma Waves near Mars’, Nature 341, 607.

    Article  ADS  Google Scholar 

  • Grard, R., Nairn, C., Pedersen, A., Klimov, S., Savin, S., Skalsky, A. and Trotignon, J. G.: 1991, ‘Plasma and Waves Around Mars’, Planetary Space Sci. 39, 89.

    Article  ADS  Google Scholar 

  • Grard, R., Skalsky, S. and Trotignon, J. G.: 1993, in T.J. Combosi (ed.), ‘Selected Wave and Plasma Features of the Martian Environment, Plasma Environment of non-Magnetic Planets, COSPAR Colloq. Ser. 4, Pergamon, New York, pp. 321.

    Google Scholar 

  • Gringauz K. I., Bezrukhikh, V. V., Verigin, M. I. and Remizov, A. P.: 1975, ‘Studies of Solar Plasma Near Mars and Along the Earth-Mras Path, 3. Characteristics of Ion and Electron Components Measured on Satellite Mars-5’, Cosmic Res. 13, 107.

    ADS  Google Scholar 

  • Gringauz, K. I., Bezrukikh, V. V., Verigin, M. I. and Remizov, A. P.: 1976, ‘On Electron and Ion

    Google Scholar 

  • Component of Plasma in the Antisolar Part of Near-martian Space, J. Geophys. Res. 81, 3349.

    Google Scholar 

  • Gringauz, K. I.: 1976, ‘Interaction of Solar Wind with Mars as Seen by Charged Particle Traps on Mars 2, 3 and 5 Satellites’, Rev. Geophys. Space Phys. 14, 391.

    Article  ADS  Google Scholar 

  • Gringauz, K. I.: 1981, ‘A Comparison of the Magnetospheres of Mars, Venus and the Earth’, Adv. Space Res. 1 (1), 5.

    Article  ADS  Google Scholar 

  • Haider, S. A., Kim, J., Nagy, A. F., Keller, C. N., Verigin, M. I., Gringauz, K. I., Shutte, N. M., Szego, K. and Kiraly, P.: 1992, ‘Calculated Ionization Rates, Ion Densities, and Aiglow Emission Rates Due to Precipitating Electrons in the Nightside Ionosphere of Mars’, J. Geophys. Res. 97, 10637.

    Article  ADS  Google Scholar 

  • Hanson, W. B., Sanatani, S. and Succaro, D. R.: 1977, ‘The Martian Ionosphere as Observed by the Viking Retarding Potential Analyzers’, J. Geophys. Res. 82, 4351.

    Article  ADS  Google Scholar 

  • Hanson, W. B. and Mantas, G. P.: 1988, ‘Viking Electron Temperature Measurements: Evidence for a Magnetic Field in the Martian Ionosphere’, J. Geophys. Res. 93, 7538.

    Article  ADS  Google Scholar 

  • Harned, D. S.: 1982, ‘Quasineutralhybrid Simulation of Macroscopic Plasma Phenomena’, J. Comp. Phys. 47, 452.

    Article  ADS  MATH  Google Scholar 

  • Harnett, E. M. and Winglee, R. M.: 2003, ‘The Influence of a Mini-magnetopause on the Magnetic Pileup Boundary of Mars’ Geophys. Res. Lett., 30, 20, 2074, doi: 1029/2003 GLO17852.

    Article  ADS  Google Scholar 

  • Herman, J. R., Hartle, R. E. and Bauer, S. J.: 1970, ‘The Dayside Ionosphere of Venus’, Planetary Space Sci. 19, 443.

    Article  ADS  Google Scholar 

  • Hill, T. W.: 1975, ‘Magnetic Merging in a Collisionless Plasma’, J. Geophys. Res. 80, 4689.

    Article  ADS  Google Scholar 

  • Hodges, R. R.: 2000, ‘Distributions of Hot Oxygen for Venus and Mars’, J. Geophys. Res. 105, 6971.

    Article  ADS  Google Scholar 

  • Holmström, M., Barabash, S. and Kallio, E.: 2001, ‘X-ray Imaging of the Solar Wind-Mars Interaction’. Geophys. Res. Lett. 28, 1287.

    Article  ADS  Google Scholar 

  • Holmström, M., Barabash, S. and Kallio, E.: 2002, ‘Energetic Neutral Atoms at Mars I: Imaging of Solar Wind Protons’, J. Geophys. Res. 107 (A10), 1277.

    Article  Google Scholar 

  • Ip, W.-H.: 1992a, ‘Ion Acceleration at the Current Sheet of the Martian Magnetosphere’, Geophys. Res. Lett. 19, 2095.

    Article  ADS  Google Scholar 

  • Ip W.-H.: 1992b, ‘Neutral Particle Environment of Mars: The Exosphere-plasma Interaction Effects’, Adv. Space Res. 12 (9), 205.

    Article  ADS  Google Scholar 

  • Ip W.-H., Breus, R. K. and Zarnowiecki, T.: 1994, ‘Termination of the Solar Wind Flow Near Mars by Charge-exchange’, Planetary Space Sci. 42, 435.

    Article  ADS  Google Scholar 

  • Izakov, M. N. and Roste, O. Z.: 1996, ‘Martian Upper Atmosphere Structure Variation’, Cosmich. Issled. 34, N3.

    Google Scholar 

  • Israelevich P. L. et al.: 1994, ‘The Induced Magnetosphere of Comet Halley: Interplanetary Magnetic Field During Giotto Encounter’, J. Geophys. Res. 99, 6575.

    Google Scholar 

  • Kallio, E., Koskinen, H., Barabash, S., Lundin, R., Norberg, O. and Luhmann, J. G.: 1994, ‘Proton Flow in the Martian Magnetosheath’, J. Geophys. Res. 99, 23547.

    Article  ADS  Google Scholar 

  • Kallio, E.: 1996, E.: 1996, ‘An Empirical Model of the Solar Wind Flow Around Mars’ J. Geophys. Res. 101, 11133.

    Article  Google Scholar 

  • Kallio, E., Luhmann, J. G. and Barabash, S.: 1997, S.: 1997, ‘Charge Exchange Near Mars: The Solar Wind Absorption and Energetic Neutral Atom Production’, J. Geophys. Res. 102, 22183.

    Article  ADS  Google Scholar 

  • Kallio, E. and Koskinen, H.: 1999, A Test Particle Simulation of Oxygen Ions and Solar Wind Protons Near Mars’, J. Geophys. Res. 104, 557.

    Article  ADS  Google Scholar 

  • Kallio, E. and Barabash, S.: 2000, ‘On the Elastic and Inelastic Collisions Between the Precipitating Energetic Hydrogen Atoms and the Martian Atmospheric Neutrals’, J. Geophys. Res. 105, 24973.

    Article  ADS  Google Scholar 

  • Kallio, E. and Barabash, S.: 2001, ‘Atmospheric Effects of Precipitating Energetic Hydrogen Atoms to the Martian Atmosphere’, J. Geophys. Res. 106, 165–177.

    Article  ADS  Google Scholar 

  • Kallio, E. and Janhunen, P.: 2001, ‘Atmospheric Effects of Proton Precipitation in the Martian Atmosphere and its Connection to the Mars-Solar Wind Interaction’, J. Geophys. Res. 106, 5617.

    Article  ADS  Google Scholar 

  • Kallio, E. and Janhunen, P.: 2002, ‘Ion Escape from Mars in a Quasi-neutral Hybrid Model’, J. Geophys. Res. 107(A3), 10.1029/2001 JA000090.

    Google Scholar 

  • Kass, D. M. and Yung, Y. L.: 1995, ‘Loss of Atmosphere from Mars due to Solar Wind Sputtering, Science 268, 697.

    Google Scholar 

  • Kass, D. M. and Yung, Y. L.: 1996, ‘Response: The Loss of Atmosphere from Mars’, Science 274, 1932.

    Article  ADS  Google Scholar 

  • Keating G. M. et al.: 1998, ‘The Structure of the Upper Atmosphere of Mars. In situ Accelerometer Measurements from Mars Global Surveyor’, Science 279, 1672.

    Google Scholar 

  • Kim, J., Nagy, A. F., Fox, J. L. and Cravens, T. E.: 1998, ‘Solar Cycle Variability of Hot Oxygen Atoms at Mars’, J. Geophys. Res. 103, 29339.

    Article  ADS  Google Scholar 

  • Kivelson, M. G., Khurana, K. K. and Volwerk, M.: 2002, ‘The Permanent and Inductive Magnetic Moments of Ganymede.’ Icarus, 157, 2, 502.

    Article  ADS  Google Scholar 

  • Kliore, A. J. et al.: 1967, ‘Atmosphere and Ionosphere of Venus from Mariner 5 S-band Radio Occultation Experiment’, Science 158, 1683.

    Google Scholar 

  • Kliore A. J., Cain, D. C., Fjeldbo, G., Seidel, B. L. and Rasool, S. I.: 1972, ‘Mariner-9 S-band Occultation Experiment: Initial Results on the Atmosphere and Topography of Mars’, Science 175, 313.

    Article  ADS  Google Scholar 

  • Kliore A. J., Fjeldbo, G., Seidel, B. L., Sykes, M. J. and Woiceshyn, P. M.: 1973, ‘S-band Radio Occultation Measurements of the Atmosphere and Topography of Mars with Mariner 9 - Extended Mission Coverage of Polar and Intermediate Latitudes’, J. Geophys. Res. 78, 4331.

    Article  ADS  Google Scholar 

  • Kliore, A. J.: 1992, ‘Radio Occultation Observations of the Ionospheres of Mars and Venus, Venus and Mars: Atmospheres, Ionospheres and Solar Wind Interactions’, 265, Geophys. Monograph 66, American Geophysical Union.

    Google Scholar 

  • Kotova, G. A., Verigin, M. I., Shutte, N. M., Remizov, A. P., Rosenbauer, H., Riedler, W., Schwingenschuh, K., Zhang, T.-L., Szego, K. and Tatrallyay, M.: 1997a, ‘Planetary Heavy Ions in the Magnetotail of Mars: Results of the TAUS and MAGMA Experiments Aboard PHOBOS 2’, Adv. Space Res. 20 (2), 173.

    Article  ADS  Google Scholar 

  • Kotova, G., Verigin, M., Remizov, A., Shutte, N., Slavin, J., Szego, K., Tatrallyay, M., Rosenbauer, H., Livi, S., Richter, A., Schwingenschuh, K. and Zhang, T.-L.: 1997b, ‘The study of the Solar Wind Deceleration Upstream of the Martian Terminator Bow Shock’, J. Geophys. Res. 102, 2165.

    Article  ADS  Google Scholar 

  • Kotova, G. A., Verigin, M. I., Remizov, A. P., Shutte, N. M., Rosenbauer, H. et al.: 2000a, ‘Heavy Ions in the Magnetosphere of Mars: Phobos 2/TAUS Observations’, Phys. Chem. of the Earth (C) 25, 157.

    Google Scholar 

  • Kotova G. A., Verigin, M. I., Remizov, A. P., Rosenbauer, H., Livi, S., Riedler, W., Schwingenschuh, K., Tatrallyay, M., Szego, K. and Apathy, I.: 2000b, ‘On the Possibility of Identifying of Heavy Ion Acceleration Processes in the Magnetotail of Mars’, Earth Planets Space 52.

    Google Scholar 

  • Krasnopolsky, V. A. and Gladstone, G. R.: 1996, ‘Helium on Mars: EUVE and PHOBOS Data and Implications for Mars’Evolution’, J. Geophys. Res. 101, 15765.

    Article  ADS  Google Scholar 

  • Krymskii, A. M.: 1992, in J. G. Luhmann, M. Tatrallyay, and R. O. Pepin (eds.), ‘An Interpretation of the Large Scale Ionospheric Magnetic Fields and the Altitude Distribution of the Ionosphere Plasma on the Dayside of Venus and Mars, Venus and Mars, Atmospheres, Ionospheres, and Solar Wind Interactions, Geophys. Monograph 66, 289.

    Google Scholar 

  • Krymskii, A. M., Breus, T. K., Ness, N. F. and Acuña, M. H.: 2000, ‘The IMF Pile-up Regions near the Earth and Venus: Lessons for the Solar Wind–Mars Interaction’, Space Sci. Rev. 92, 535.

    Article  ADS  Google Scholar 

  • Krymskii, A. M., Breus, T. K., Ness, N. F., Acuña, M. H., Connerney, J. E. P., Crider, D. H., Mitchell, D. L. and Bauer, S. I.: 2002, ‘Structure of the Magnetic Field Flux Connected with Crustal Magnetization and Top-side Ionosphere of Mars’, J. Geophys. Res. 107 (A9), 1245, doi: 10.1029/2001 JAO000239.

    Article  Google Scholar 

  • Kumar, S. and Hunten, D. M.: 1974, ‘An Ionospheric Model With an Exospheric Temperature of 350 K’, J. Geophys. Res. 79, 2529.

    Article  ADS  Google Scholar 

  • Leblanc, F. and Johnson, R. E.: 2002, ‘Role of Molecular Species in Pickup Ion Sputtering of the Martian Atmosphere’, J. Geophys. Res. 107(E2), 10.1029/2000JE001473.

    Google Scholar 

  • Lichtenegger, H., Schwingenschuh, K., Dubinin, E. and Lundin, R.: 1995, ‘Particle Simulation in the Martian Magnetotail’, J. Geophys. Res. 21659.

    Google Scholar 

  • Lichtenegger, H., Dubinin, E. and Ip, W.-H.: 1997, ‘The Depletion of the Solar Wind near Mars’, Adv. Space Res. 20 (2), 143.

    Article  ADS  Google Scholar 

  • Lichtenegger, H. and Dubinin, E.: 1998, ‘Model Calculations of the Planetary Ion Distribution in the Martian Tail’, Earth Planets Space 50, 445.

    ADS  Google Scholar 

  • Lichtenegger, H. and Dubinin, E.: 1999, ‘Charge-exchange in the Magnetosheath of Mars’, Adv. Space Res..

    Google Scholar 

  • Lichtenegger, H., Dubinin, E., Schwingenschuh, K. and Riedler, W.: 2000, ‘The Martian Plasma Environment: Model Calculations and Observations’, Adv. Space Res. 26, 1623.

    Article  ADS  Google Scholar 

  • Lichtenegger, H., Lammer, H. and Stumptner, W.: 2002, ‘Energetic Neutral Atoms at Mars III: Flux and Energy Distribution of Planetary Energetic H atoms’, J. Geophys. Res. 107, (A10), 1279, doi: 10.1029/2001 JA000322.

    Article  Google Scholar 

  • Liu, Y., Nagy, A. F., Clinton, P. T., Groth, D. L., DeZeeuw, L. and Gombosi, T. I.: 1999, ‘3D multi- fluid MHD Studies of the Solar Wind Interaction with Mars’, Geophys. Res. Lett. 26, 2689.

    Article  ADS  Google Scholar 

  • Liu, Y, Nagy, A. F., Gombosi, T. I., DeZeeuw, D. L. and Powell, K. G.: 2001, ‘The Solar Wind Interaction with Mars: Results of Three-dimensional Three-species MHD Studies’, Adv. Space Res. 27, 1837.

    Article  ADS  Google Scholar 

  • Luhmann, J. G.: 1986, ‘The Solar-Wind Interaction with Venus’, Space Sci. Rev. 44(3–4, 241.

    Google Scholar 

  • Luhmann, J. G. and Cravens, T. E.: 1991, ‘Magnetic Fields in the Ionosphere of Venus’, Space Sci. Rev. 55, 201.

    Article  ADS  Google Scholar 

  • Luhmann, J. G. and Kozyra, J. U.: 1991, ‘Dayside Pickup Oxygen Ion Precipitation at Venus and Mars: Spatial Distributions, Energy Deposition and Consequences’, J. Geophys. Res. 96, 5457.

    Article  ADS  Google Scholar 

  • Luhmann, J. G. et al.: 1987, ‘Characteristics of the Mars-like Limit of the Venus–Solar Wind Interaction’, J. Geophys. Res. 92, 8545.

    Article  ADS  Google Scholar 

  • Luhmann, J. G., Russell, C. T., Schwingenschuh, K. and Yeroshenko, Ye.: 1991, Ye.: 1991, ‘A Comparison of Induced Magnetotails of Planetary Bodies: Venus, Mars, and Titan’, J. Geophys. Res. 95, 11199.

    Google Scholar 

  • Luhmann, J. G. et al.: 1992, ‘Evolutionary Impact of Sputtering of the Martian Atmosphere by O+Pickup Ions’, Geophys. Res. Lett. 19, 2151.

    Google Scholar 

  • Lundin, R., Zakharov, A., Pellinen, R., Borg, H., Hultqvist, B., Pissarenko, N., Dubinin, E. M., Bara-bash, S. V., Liede, I. and Koskinen, H.: 1989, ‘First Measurements of the Oonospheric Plasma Escape from Mars’, Nature, 341, 6243, 609.

    Article  ADS  Google Scholar 

  • Lundin, R. et al.: 1990, ‘Plasma Composition Measurements of Martian Magnetosphere Morphology’, Geophys. Res. Lett. 17, 877.

    Google Scholar 

  • Lundin, R. and Dubinin, E. M.: 1992, ‘Phobos-2 Results on the Ionospheric Plasma Escape from Mars’, Adv. Space Res. 12 (9), 255.

    Article  ADS  Google Scholar 

  • Lundin, R. et al.: 1993, in T. I. Gombosi (ed.), ‘ASPERA Observations of Martian Magnetospheric Boundaries’, Plasma Environments of Non-magnetic Planets Pergamon Press, p. 311.

    Google Scholar 

  • Ma, Y., Nagy, A. A. F., Hansen, K. C., DeZeeuw, D. L., Gombosi, T. I. and Powell, K. G.: 2002, ‘3D Multi-fluid MHD Studies of the Solar Wind Interaction with Mars in the Presence of Crustal Fields’, J. Geophys. Res. 107, (in press).

    Google Scholar 

  • Ma, Y., Nagy, A. F. and Sokolov, I. V. and K. C. Hansen: 2004, 3D, Multispecies, High Spatial Presolution MHD Studies of the Solar Wind Interaction with Mars, J. Geophys. Res., 109, 2003 JAO10367.

    Google Scholar 

  • Mahajan, K. K. and Mayr, H. G.: 1989, ‘Venus Ionopause During Solar Minimum’, Geophys. Res. Lett. 16, 1477.

    Article  ADS  Google Scholar 

  • Mantas, G. P. and Hanson, W. B.: 1979, ‘Photoelectron Fluxes in the Martian Ionosphere’, J. Geophys. Res. 84, 369.

    Article  ADS  Google Scholar 

  • Marubashi, K., Grebowsky, J. M., Taylor, H. A. et al.: 1985, ‘Magnetic Field in the Wake of Venus and the Formation of Ionospheric Holes’, J. Geophys. Res. 90, 1385.

    Google Scholar 

  • Mazelle, C., Rème, H., Sauvaud, J. A., d’Uston, C., Carlson, C. W., Anderson, K. A., Curtis, D. W., Lin, R. P., Korth, A., Mendis, D. A., Neubauer, F. M., Glassmeier, K. H. and Raeder, J.: 1989, ‘Analysis of Suprathermal Electron Properties at the Magnetic Pile-up Boundary of Comet P/Halley’, Geophys. Res. Lett. 16 (9), 1035.

    Article  ADS  Google Scholar 

  • Mazelle, C, Rème, H., Neubauer, F. M. and Glassmeier, K.-H.: 1995, ‘Comparison of the Main Magnetic and Plasma Features in the Environments of Comets Grigg-skjellerup and Halley’, Adv. Space Res 16, (4)41–(4)45.

    Article  ADS  Google Scholar 

  • Mazelle C., Vignes, D., Rème, H., Sauvaud, J. A., d’Uston, C., Acuña, M. H., Connerney, J. E. P., Wasilewski, P., Lin, R. P., Mitchell, D. L., Anderson, K. A., Carlson, C. W., McFadden, J., Curtis, D. W., Cloutier, P. A., Crider, D. H., Law, C. C., Bauer, S. J., Ness, N. F. and Winterhalter, D.: 1998, ‘Analysis of the Magnetic ‘Pile-up’ Boundary at Mars, Eos Trans. AGU Fall Meet. Suppl., Abstract P12A-09.

    Google Scholar 

  • Mazelle, C., Bertucci, C., Rème, H., Mitchell, D. L., Lin, R. P., Vignes, D., Crider, D. H., Acuña, M. H., Connerney, J. E. P., Sauer, K., Chen, Y., Cloutier, P. A., Ness, N. F., and Winterhalter, D.: 2002, ‘The Magnetic Pileup Boundary at Mars: A Comet-like Feature in the Interaction of the Planet Atmosphere with the Solar Wind’, in preparation.

    Google Scholar 

  • McComas D. J., Spence, H. E., Russell, C. T. et al.: 1986, ‘The Average Magnetic-field Draping and Consistent Plasma Properties of the Venus Magnetotail’. J Geophys Res. 91, 7939.

    Google Scholar 

  • McElroy, M. B.: 1969, ‘Structure of the Venus and Mars Atmospheres’, J. Geophys. Res. 74, 29. McElroy, M. B. and McConnell, J. C.: 1971, ‘Atomic Carbon in the Atmospheres of Mars and Venus’, J. Geophys. Res. 76, 6674.

    Article  ADS  Google Scholar 

  • McElroy, M. B. and McConnell, J. C. C.: ‘Dissociation of CO2 in the Martian Atmosphere’, J. Atmos. Sci. 28, 1437.

    Google Scholar 

  • McKenzie J. F., Marsch, E., Baumgartel, K. and Sauer, K.: 1993, ‘Wave and Stability Properties of Multi-ion Plasmas with Applications to Winds and Flows’, Annal. Geophysikae 11, 341.

    ADS  Google Scholar 

  • McKenzie J. F., Sauer, K. and Dubinin, E.: 2001, ‘Stationary Waves in a Bi-ion Plasma Transverse to the Magnetic Field’, J. Plasma Physics 65, 197.

    ADS  Google Scholar 

  • Mellott, M. M. and Livesey, W. A.: 1987, ‘Shock Overshoots Revisited’, J. Geophys. Res. 92, 13661. Michel, F. C.: 1971, ‘Solar-wind-induced Mass Loss from Magnetic Field-free Planets’, Planetary Space Sci. 19, 1580.

    Google Scholar 

  • Mitchell, D. L. et al.: 2000, ‘Oxygen Auger Electrons Observed in Mars’ Ionosphere’, Geophys. Res. Lett. 27, 1827.

    Google Scholar 

  • Mitchell, D. L., Lin, R. P., Mazelle, C., Rème, H., Cloutier, P. A., Connerney, J. E. P., Acuña, M. H. and Ness, N. F.: 2001, ‘Probing Mars’ Crustal Magnetic Field and Ionosphere with the MGS Electron Reflectometer’, J. Geophys. Res. 106, 23419.

    Article  ADS  Google Scholar 

  • Mitchell, D. L., Lin, R. P., Rème, H., Cloutier, P. A., Connerney, J. E. P., Acuña, M. H. and Ness, N. F.: 2002, ‘Probing Mars’ Crustal Magnetic Field and Ionosphere with the MGS Electron Reflectometer, Lunar and Planetary Science XXX III.

    Google Scholar 

  • Motschmann, U., Sauer, K., Roatsch, T. and McKenzie, J. F.: 1991, ‘Subcritical Multiple-ion Shocks’, J. Geophys. Res. 96, 13841.

    Article  ADS  Google Scholar 

  • Möhlmann, D. et al.: 1991, ‘The Question of an Internal Martian Magnetic Field’, Planetary Space Sci. 39, 83.

    Google Scholar 

  • Möhlmann D.: 1992, ‘The Question of a Martian Planetary Magnetic Field’, Adv. Spave. Res. 12 (8), 213.

    Article  ADS  Google Scholar 

  • Mura, A., Milillo, A., Orsini, S., Kallio, E. and Barabash, S.: 2002, ‘Energetic Neutral Atoms at Mars II: Energetic Neutral Atom Production near Phobos’, J. Geophys. Res. 107 (A10), 1278.

    Article  Google Scholar 

  • Nagy, A. F., Cravens, T. E., Smith, S. G., Taylor, H. A. and Brinton, H. C.: 1980, ‘Model Calculations of the Dayside Ionosphere of Venus: Ionic Composition’, J. Geophys. Res. 85, 7795.

    Article  ADS  Google Scholar 

  • Nagy, A. F., Gombosi, T. I., Szego, K., Sagdeev, R. Z., Shapiro, V. D. and Shevchenko, V. I.: 1990, ‘Venus Mantle - Mars Planetosphere: What are the Similarities and Differences’, Geophys. Res. Lett. 17, 865.

    Article  ADS  Google Scholar 

  • Nagy, A. F. and Cravens, T. E.: 1997, in S. W. Bougher, D. M. Hunten and R. J. Phillips (Eds.), ‘Ionosphere: Energetics’, Venus II p. 189.

    Google Scholar 

  • Nagy, A. F. and Cravens, T. E.: 2002, in M. Mendillo, A. Nagy and H. Waite (Eds.), ‘Solar System Ionospheres’, Atmospheres in the Solar System: Comparative Aeronomy p. 39, Geophys. Mon. 130, American Geophysical Union.

    Google Scholar 

  • Ness, N. F., Acuña, M. H., Connerney, J., Wasilewski, P., Mazelle, C., Sauvaud, J., Vignes, D., d’Uston, C., Rème, H., Lin, R., Mitchell, D. I., McFadden, J., Curtis, D., Cloutier, P. and Bauer, S.: 1999, ‘MGS Magnetic Fields and Electron Reflectometer Investigation: Discovery of Paleomagnetic Fields due to Crustal Remnance’, Adv. Space Res. 23 (11), 1876.

    Article  ADS  Google Scholar 

  • Ness, N. F. et al.: 2000, ‘Effects of Magnetic Anomalies Discovered at Mars on the Structure of the Martian Ionosphere and Solar Wind Interaction as Follows from Radio Occultation Experiment’ J. Geophys. Res 105, 15991.

    Google Scholar 

  • Neubauer, F. M.: 1987, ‘Giotto Magnetic-field Results on the Boundary of the Pile-up Region and the Magnetic Cavity’, Astron. Astropys. 187, 73.

    MathSciNet  ADS  Google Scholar 

  • Neubauer, F. M., Marschall, H., Pohl, M., Glassmeier, K.-H., Musmann, G., Mariani, F., Acuña,. H., Burlaga, L. F., Ness, N. F., Wallis, M. K., Schmidt, H. U. and Ungstrup, E.: 1993, ‘First Results from the Giotto Magnetometer Experiment During the P/Grigg-Skjellerup Encounter’, Astron. Astrophys. 268, L5–L8.

    ADS  Google Scholar 

  • Nier, A. J. and McElroy, M. B.: 1977, ‘Composition and Structure of the Mars’ Upper Atmosphere: Results from the Neutral Mass Spectrometers on Viking 1 and 2’, J. Geophys. Res. 82, 4241.

    Article  ADS  Google Scholar 

  • Norberg, O., Barabash, S. and Lundin, R.: 1993, in T. Gombosi (ed.), ‘Observations of Molecular Ions in the Martian Plasma Environment’, Plasma Environments of Non-magnetic Planets, COSPAR Colloquia Series, 4, p. 299.

    Google Scholar 

  • Paxton, L. J. and Anderson, D. E.: 1991, ‘Far Ultraviolet Remote Sensing of Venus and Mars’, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, 112, Geophysical Monograph 66, American Geophysical Union, Washington DC.

    Google Scholar 

  • Pedersen A., Nairn, C., Grard, R. and Schwingenschuh, K.: 1991, K.: 1991, ‘Deviation of Electron Densities from Differential Potential Measurements Upstream and Downstream of the Bow Shock and in the Magnetosphere of Mars’, J. Geophys. Res. 96, 1 1243.

    Google Scholar 

  • Phillips, J. L., Luhmann, J. G. and Russell, C. T.: 1984, ‘Growth and Maintenance of Large-scale Magnetic Fields in the Dayside of Venus’, J. Geophys. Res. 89, 10676.

    Article  ADS  Google Scholar 

  • Powell et al.: 1999, ‘A solution-adaptive Upwind Scheme for Ideal Magnetohydrodynamics’, J. Comp. Phys. 154, 284.

    Google Scholar 

  • Rasool, S. I. and Stewart, R. W.: 1971, ‘Results and Interpretation of S-band Occultation Experiments n Mars and Venus’, J. Atmos. Sci. 28, 869.

    Article  ADS  Google Scholar 

  • Rème, H., Mazelle, C., Sauvaud, J. A., d’Uston, C., Froment, F., Lin, R. P., Anderson, K. A., Carlson, C. W., Larson, D. E., Korth, A., Chaizy, P. and Mendis, D.A.: 1993, ‘Electron Plasma Environment at Comet Grigg-Skjellerup: General Observations and Comparison with the Environment at Comet Halley’, J. Geophys. Res. 98, 20965.

    Article  Google Scholar 

  • Riedler, W,., Mohlmann, D., Oraevsky, V. N., Schwingenschuh, K., Eroshenko, Ye., Rustenbach, J., Aydogar, Oe., Berghofer, G., Lichtenegger, H., Delva, M., Schelch, G., Pirsch, K., Fremuth, G., Steller, M., Arnold, H., Raditsch, T., Ayster, U., Fornacon, K.-H., Schenk, H. J., Michaelis, H., Motschmann, U., Roatsch, T., Sauer, K., Schroter, R., Kurths, J., Lenners, D., Linthe, J., Kobzev, V., Styashkin, V., Achache, J., Slavin, J., Luhmann, J. G. and Russell, C. T.: 1989, ‘Magnetic Fields Near Mars: First Results’, Nature 341, 604.

    Google Scholar 

  • Roelof, E. C. and Skinner, A. J.: 2000, ‘Extraction of Ion Distributions from Magnetospheric and EUV Images’, Space Sci. Rev. 91, 437.

    Article  ADS  Google Scholar 

  • Rohrbaugh, R. P., Nisbet, J. S., Blauler, E. and Hesman, J. R.: 1979, ‘The Effect of Energetically Produced O2+ on the Ion Temperatures of the Martian Thermosphere’, J. Geophys. Res. 84, 3327, 1979.

    Google Scholar 

  • Rosenbauer, H., N. Shutte, I. Apathy, A. Galeev, K. Gringauz, H. Gruenwaldt, P. Hemmerich, K. Jockers, P. Kiraly, G. Kotova, S. Livi, E. Marsh, A. Richter, W. Riedler, A. Remizov, R. Schwenn, K. Schwingenschuh, M. Steller, K. Szego, M. Verigin, and M. Witte, Ions of martian origin and plasma sheet in the martian magnetotail: Initial results of TAUS experiment, Nature, 341, 612, 1989.

    Article  ADS  Google Scholar 

  • Rosenbauer, H., M. Verigin, G. Kotova, S. Livi, A. Remizov, W. Riedler, K. Schwingenschuh, N. Shutte, J. Slavin, K. Szego, M. Talrallyay and T.-L. Zhang: 1994, On the Correlation of the Magnetic Field in the Martian Magnetotail to the Solar Wind Parameters, J. Geophys. Res. 99, 17199.

    Article  ADS  Google Scholar 

  • Russell, C. T., Hoppe, M. M. and Livesay, W. A.: 1982, ‘Overshoots in Planetary Bow Shocks’, Nature 296, 45.

    Article  ADS  Google Scholar 

  • Russell, C. T.: 1985, in B. Tsurutani and R. Stone (eds) Planetary bow shocks, Collisionless Shocks in the Heliosphere: Reviews of Current Research, Geophysical Monograph 35, Washington DC, p. 109.

    Google Scholar 

  • Russell, C. T. et al.: 1988, ‘Solar and Interplanetary Control of the Location of the Venus Bow Shock’, J. Geophys. Res. 93, 5461.

    Google Scholar 

  • Sagdeev, R. Z. and Zakharov, A. V.: 1989, ‘Brief History of the Phobos Mission’, Nature 341, 585.

    Article  ADS  Google Scholar 

  • Sauer K., Baumgärtel, K., Axnäs, I. and Brenning, N.: 1990, ‘A Fluid Simulation of the AMPTE Solar Wind Lithium Release’, Adv. Space Res. 10, 95.

    Article  ADS  Google Scholar 

  • Sauer, K., Roatsch, T., Motschmann, U., Schwingenschuh, K., Lundin, R., Rosenbauer, H. and Livi, S.: 1992, ‘Observations of Plasma Boundaries and Phenomena around Mars with Phobos 2’, J. Geophys. Res. 97, 6227.

    Article  ADS  Google Scholar 

  • Sauer, K., Roatsch, T., Baumgartel, K. and McKenzie, J. F.: 1992, ‘Critical Density Layer as Obstacle at Solar Wind-Exosphere Ion Interaction’, Geophys. Res. Lett. 19, 645.

    Article  ADS  Google Scholar 

  • Sauer, K., Bogdanov, A. and Baumgartel, K.: 1994, ‘Evidence of an Ion Composition Boundary (Protonopause) in Bi-Ion Fluid Simulations of Solar Wind Mass Loading’, Geophys. Res. Lett. 21, 2255.

    Article  ADS  Google Scholar 

  • Sauer, K., Bogdanov, A. and Baumgartel, K.: 1995, ‘The Protonopause–an Ion Composition Boundary in the Magnetosheath of Comets, Venus and Mars’, Adv. Space Res. 16 (4), 153.

    Article  ADS  Google Scholar 

  • Sauer, K., Dubinin, E., Baumgartel, K. and Bogdanov, A.: 1996, ‘Bow-Shock ‘Splitting’ in Bi-Ion Flows’, Geophys. Res. Lett. 23, 3643.

    Google Scholar 

  • Sauer, K., Dubinin, E. and Baumgartel, K.: 1998, ‘Nonlinear MHD Waves and Discontinuities in the Martian Magnetosheath. Observations and 2D bi-ion MHD Simulations’, Earth Planets Space 50, 793.

    ADS  Google Scholar 

  • Sauer, K., McKenzie, E. J. F. and Dubinin, E.: 2000, in M. Verheest, M. Goosens, M. A. Hellberg and R. Bharuthram (eds), Waves and nonlinear structures in bi-ion plasmas, in: Waves in Dusty, Solar and Space Plasmas Vol. 537 AIP Conference Proceedings, p. 327, American Institute of Ophysics, Melville, N.Y..

    Google Scholar 

  • Sauer, K. and Dubinin, E.: 2000, ‘The Nature of the Martian ‘Obstacle Boundary’, Adv. Space Res. 26 (10), 1633.

    Article  ADS  Google Scholar 

  • Savich, N. A. et al.: 1979, in N. F. Ness (ed) The nighttime ionosphere of Mars from Mars 4 and 5 radio occultation dual -frequency measurements, Solar Wind Interaction with the Planets Mercury, Venus, and Mars, NASA Special Publication 397, Washington, DC.

    Google Scholar 

  • Schunk, R. W. and Nagy, A. F.: 2000, Ionospheres, Cambridge University Press.

    Google Scholar 

  • Schwingenschuh, K., Riedler, W., Yeroshenko, Y. et al.: 1987, ‘Magnetic-Field Draping in the Comet Halley Coma - Comparison of Vega Observations with Computer-Simulations’, Geophys. Res. Lett. 14, 640.

    Google Scholar 

  • Schwingenschuh, K., Riedler, W., Lichtenegger, H., Yeroshenko, Ye., Sauer, K., Luhmann, J. G., Ong, M. and Russell, C. T.: 1990, ‘Martian Bow Shock: Phobos Observations’, Geophys. Res. Lett. 17, 889.

    Article  ADS  Google Scholar 

  • Schwingenschuh, K. et al.: 1992a, ‘The Martian Magnetic Field Environment: Induced or Dominated by an Intrincic Magnetic Field’, Adv. Space Res. 12(9), 213.

    Article  ADS  Google Scholar 

  • Schwingenschuh, K. a. W. R.: 1992b, in H. K. Biernat, G. A. Bachmaier, S. J. Bauer and R. P. Rijnbeek (eds), Solar wind interaction with nonmagnetic and weakly magnetized bodies in the solar system. Proceedings of the Workshop ‘The Solar Wind-Magnetosphere System’, 247.

    Google Scholar 

  • Shabanskiy, V. P.: 1972, Phenomena in the Near Terrestrial Space, Nauka, pp. 167–190, Moscow (in Russian).

    Google Scholar 

  • Shinagawa, H., Cravens, T. E. and Nagy, A. F.: 1987, ‘A One-Dimensional Time-Dependent Model of the Magnetized Ionosphere of Venus’, J. Geophys. Res. 92, 7317.

    Article  ADS  Google Scholar 

  • Shinagawa, H. and Cravens, T. E.: 1988, A One-Dimensional Multi-Species Magnetohydrodynamic Model of the Dayside Ionosphere of Venus’, J. Geophys. Res. 93, 11263.

    Article  ADS  Google Scholar 

  • Shinagawa, H. and Cravens, T. E.:1989, ‘A One-Dimensional Multispecies Magneto Hydodynamical Model of the Dayside Ionosphere of Mars’, J. Geophys. Res. 94, 6506.

    Google Scholar 

  • Shinagawa, H. and Cravens, T. E.: 1992, ‘The Ionospheric Effects of a Weak Intrinsic Magnetic Field at Mars’, J. Geophys. Res. 97, 1027.

    Article  ADS  Google Scholar 

  • Shinagawa, H.: 1996, ‘A Two-Dimensionsl Model of the Venus Ionosphere, 1. Unmagnetized Ionosphere’, J. Geophys. Res. 101, 26911.

    Article  ADS  Google Scholar 

  • Shutte, N. M. et al.: 1989, ‘Observations of Electron and Ion Fluxes in the Vicinity of Mars with the HARP Spectrometer’, Nature 341, 614.

    Google Scholar 

  • Slavin, J. A., Elphic, R. C. and Russell, C. T.: 1979, ‘A Comparison of Pioneer Venus and Venera Bow Shock Observations: Evidence for a Solar Cycle Variation’, Geophys. Res. Lett. 6, 905.

    Article  ADS  Google Scholar 

  • Slavin, J. A. and Holzer, R. E.: 1982, ‘The Solar Wind Interaction with Mars Revisited’, J. Geophys. Res. 87, 10285.

    Article  ADS  Google Scholar 

  • Slavin, J. A., Holzer, R. E., Spreiter, J. R., Stahara, S. S. and Chaussee, D. S.: 1983, Solar Wind Flow about the Terrestrial Planets, 2. Comparisons with Gasdynamic Theory and Implications for Solar Planetary Interactions’, J. Geophys. Res. 88, 19.

    Article  ADS  Google Scholar 

  • Slavin, J. A. and Holzer, R. E.: 1983, ‘Solar Wind Flow about the Terrestrial Planets 2, Comparison with Gasdynamic Theory and Implications for Solar-Planetary Interactions’, J. Geophys. Res. 88, 19.

    Article  ADS  Google Scholar 

  • Slavin, J. A., Smith, E. J. and Intriligator, D. S.: 1984, ‘A Comparative Study of Distant Magnetotail Structure at Venus and Earth’, Geophys. Res. Lett. 11, 1074.

    Article  ADS  Google Scholar 

  • Slavin, J. A., Smith, E. J., Tsurutani, B. T. et al..: 1986, ‘Giacobini-Zinner Magnetotail: ICE Magnetic Field Observations’, Geophys. Res. Lett. 13, 283.

    Google Scholar 

  • Slavin, J. A., Schwingenschuh, K., Riedler, W. and Yeroshenko, Ye.: 1991, Ye.: 1991, ‘The Solar Wind Interaction with Mars: Mariner 4, Mars 2, Mars 3, Mars 5 and Phobos 2 Observations of Bow Shock Position and Shape’, J. Geophys. Res. 96, 1 1235.

    Google Scholar 

  • Speiser, T. W.: 1965, ‘Particle Trajectories in Model Current Sheets, 1.Analytical Solutions’, J. Geophys. Res. 70, 4219.

    Article  ADS  Google Scholar 

  • Spenner, K., Knudsen, W. C., Miller, K. L., Novak, V., Russell, K. L. and Elphic, R. C.: 1980, ‘Observation of the Venus Mantle, the Boundary Region Between Solar Wind and Ionosphere’, J. Geophys. Res. 85, 7655.

    Article  ADS  Google Scholar 

  • Spreiter, J. R. and Briggs, B. R.: 1962, ‘Theoretical Determination of the Form of the Boundary of the Solar Corpuscular Stream Produced by the Interaction with the Magnetic Dipole Field of the Earth’, J. Geophys. Res. 67, 37.

    Article  ADS  Google Scholar 

  • Spreiter, J. R. and Stahara, S. S.: 1980: ‘A New Predictive Model for Determining Solar Wind–Terrestrial Planet Interactions’, J. Geophys. Res. 85 (6), 769.

    Google Scholar 

  • Stewart, A. I.: 1972, ‘Mariner 6 and 7 Ultraviolet Ultraviolet Spectrometer Experiment: Implications of CO+ 2, CO, and O Airglow’, J. Geophys. Res. 77, 54.

    Article  ADS  Google Scholar 

  • Stewart, A. I. and Hanson, W. B.: 1982, in A. Kliore (ed) Mars Upper Atmosphere: Mean and Variations, in the Mars Reference Atmosphere, Adv. Space Res. 2, 87.

    Google Scholar 

  • Szegö, K., Glassmeier, K. H., Brinca, A., Bingham, R., Cravens, T., Fischer, C., Fisk, L., Gombosi, T., Harendel, G., Lee, M., Mazelle, C., Moebius, E., Motschmann, U., Isenberg, P., Sauer, K., Shapiro, V., Schwadron, N., Tsurutani, B. and Zank, G.: 2000, ‘Physics of Mass Loaded Plasma’, Space Sci. Rev. 94, 429.

    Article  ADS  Google Scholar 

  • Szego, K.: 2001, ‘Present Understanding of the Dayside Mantle of Venus and Mars’, Adv. Space Res. 28, 841.

    Article  ADS  Google Scholar 

  • Trotignon, J. G., Grard, R. and Slavin, S.: 1991, S.: 1991, ‘Plasma Wave System Measurements of the Martian Bow Shock from the Phobos 2 Spacecraft’, J. Geophys. Res. 96, 1 1253.

    Google Scholar 

  • Trotignon, J. G., Grard, R. and Skalsky, A.: 1993, ‘Position and Shape of the Martian Bow Shock: the Phobos 2 Plasma Wave System Observations’, Planetary Space Sci. 41, 189.

    Article  ADS  Google Scholar 

  • Trotignon, J. G., Dubinin, E., Grard, R., Barabash, S. and Lundin, R.: 1996, ‘Martian Planetopause as Seen by the Plasma Wave System Onboard Phobos 2, J. Geophys. Res. 101, 24965.

    Google Scholar 

  • Vaisberg, O. L., Bogdanov, A. V., Smirnov, V. N. and Romanov, S. A.: 1975, ‘Initial Results of Ion Flux Measurements by RIEP-2801M Instrument on Mars-4 and Mars-5’, Cosmic Res. 13, 112.

    ADS  Google Scholar 

  • Vaisberg, O. L.: 1976, in D. J. Williams (ed) Mars - plasma environment, Physics of Solar Planetary Environments, Vol. 2. AGU, Boulder, Colorado, 854.

    Google Scholar 

  • Vaisberg, O. L.: 1992, in J. G. Luhmann, M. Tatrallyay and R. O. Pepin (eds), The solar wind interaction with Mars: A review of results from early soviet missions to Mars, in Venus and Mars: Atmospheres, Ionospheres, and Solar wind Interactions, Geophys. Monogr. 66, NW, Washington, p. 311.

    Chapter  Google Scholar 

  • Vasiliev, M. B., Vyshlov, A. S., Kolosov, M. A., Savich, A. I. et al.: 1975, ‘Preliminary Results of the Two Frequency Radio Sounding of the Martian Ionosphere by Using the Mars Interplanetary Stations in 1974’, Kosmicheskie issledovanija 13,48 (in Russian).

    Google Scholar 

  • Verigin, M. I., Shutte, N. M., Galeev, A. A., Gringauz, K. I., Kotova, G. A., Remizov, A. P., Rosenbauer, H., Hemmerich, P., Livi, S., Richter, A. K., Apathy, I., Szego, K., Riedler, W., Schwingenschuh, K., Stellar, M. and Yeroshenko, Ye. G.: 1991a, ‘Ions of Planetary Origin in the Martian Magnetosphere (Phobos 2/Taus Experiment)’, Planetary Space Sci. 39, 131.

    Article  ADS  Google Scholar 

  • Verigin, M. I., Gringauz, K. I., Shutte, N. M., Haider, S. A., Szgo, K., Kiraly, P., Nagy, A. F. and Gombosi, T. I.,: 19916, J. Geophys. Res., 96, 19307.

    Google Scholar 

  • Verigin, M. I., Gringauz, K. I., Kotova, G. A., Remizov, A. P., Shutte, N. M., Richter, A., Riedler, W., Schwingenschuh, K., Szego, K., Apathy, I. and Tatrallyay, M.: 1993, ‘The Dependence of the Martian Magnetopause and Bow Shock on Solar Wind Ram Pressure According to Phobos 2 TAUS Ion Spectrometer Measurements’, J. Gephys. Res. 98, 1303.

    Article  ADS  Google Scholar 

  • Verigin, M., Kotova, G., Shutte, N., Remizov, A., Szego, K., Tatrallyay, M., Apathy, I., Rosenbauer, H., Livi, S., Richter, A. K. Schwingenschuh, K., Zhang, T.-L., Slavin, J. and Lemaire, J.: 1997, ‘Quantitative Model of the Martian Magnetopause Shape and its Variation with the Solar Wind Ram Pressure Based on Phobos 2 Observations’, J. Geophys. Res. 102, 2147.

    Article  ADS  Google Scholar 

  • Verigin, M. I., Kotova, G. A., Remizov, A. P., Styazhkin, V. A., Shutte, N. M., Zhang, T.-L., Riedler, W., Rosenbauer, H., Szego, K., Tatrallyay, M. and Schwingenschuh, K.: 1999, ‘Shape and Location of Planetary Bow Shocks’, Cosmic Res. 37, 34.

    ADS  Google Scholar 

  • Verigin, M. I., Kotova, G. A., Remizov, A. P., Szegö, K., Tátrallyay, M., Slavin, J., Rosenbauer, H., Livi, S., Riedle, W., Schwingenschuh, K. and Zhang, T.-L.: 2001, ‘Evidence of the Influence of Equatorial Martian Crustal Magnetization on the Position of the Planetary Magnetotail Boundary by Phobos 2 Data’, Adv. Space Res. 28 (6), 885.

    Article  ADS  Google Scholar 

  • Vignes, D. et al.: 2000, ‘The Solar Wind interaction with Mars: Locations and Shapes of the Bow Shock and the Magnetic Pile-up Boundary from the Observations of the MAG/ER Experiment Onboard Mars Global Surveyor’, Geophys. Res. Lett. 27, 49.

    Google Scholar 

  • Vignes, D., Acuña, M. H., Connerney, J. E. P., Crider, D. H., Mazelle, C. and Rème, H.: 2002, ‘Factors Controlling the Location of the Bow Shock at Mars’, Geophys. Res. Lett. 29, 9, 42, 1328 doi: 10.029/2001 GL014513.

    Article  Google Scholar 

  • Wallis, M. K.: 1978, ‘Exospheric Density and Escape Fluxes of Atomic Isotopes on Venus and Mars’, Planetary Space Sci. 26, 949.

    Article  MathSciNet  ADS  Google Scholar 

  • Whitten, R. C.: 1970, ‘The Daytime Upper Atmosphere of Venus’, J. Geophys. Res. 75, 3707. Yeroshenko, Ye., Riedler, W., Schwingenschuh, K., Luhmann, J. G., Ong, M. and Russell, C. T.: 1990, ‘The Magnetotail of Mars: Phobos 2 Observations’, Geophys. Res. Lett. 17 (6), 885–888.

    Google Scholar 

  • Zakharov, A. V.: 1992, in J. G. Luhmann, M. Tatrallyay and R. Pepin (eds), The plasma environment of Mars: Phobos mission results, Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, p. 327, Geophysical Monograph 66, Washington, D.C..

    Google Scholar 

  • Zhang, T. L., Luhmann, J. G. and Russell, C. T.: 1990a, ‘The Solar Cycle Dependence of the Location and Shape of the Venus Bow Shock’, J. Geophys. Res. 95, 14961.

    Article  ADS  Google Scholar 

  • Zhang, M. H. G., Luhmann, J. G. and Kliore, A. J.: 1990b, ‘An Observational Study of the Nightside Ionospheres of Venus and Mars with Radio Occultation Methods’, J. Geophys. Res. 95, 17095.

    Article  ADS  Google Scholar 

  • Zhang, M. H. G., Luhmann, J. G. and Kliore, A. J.: 1990c, ‘A Post-Pioneer Venus Reassessment of the Martian Dayside Ionosphere as Observed by Radio Occultation Methods’, J. Geophys. Res. 95, 14829.

    Article  ADS  Google Scholar 

  • Zhang, T. L., Luhmann, J. G. and Russell, C. T.: 1991. T.: 1991, ‘The Magnetic Barrier at Venus’, J. Geophys. Res. 96, 1 1145.

    Google Scholar 

  • Zhang, M. H. G., Luhmann, J. G., Nagy, A. F., Spreiter, J. R. and Stahara, S. S.: 1993a, ‘Oxygen Ionization Rates at Mars and Venus: Relative Contributions of Impact Ionization and Charge Exchange’, J. Geophys. Res. 98, 3311.

    Article  ADS  Google Scholar 

  • Zhang, M. H. G., Luhmann, J. G., Bougher, S. W. and Nagy, A. F.: 1993b, ‘The Ancient Oxygen Exosphere of Mars: Implication for Atmospheric Evolution’, J. Geophys. Res. 98, 10915.

    Article  ADS  Google Scholar 

  • Zhang, T. L., Schwingenschuh, K., Russell, C. T., Luhmann, J. G., Rosenbauer, H., Verigin, M. I. and Kotova, K.: 1994, ‘The Flaring of the Martian Magnetotail Observed by the Phobos 2 Spacecraft’, Geophys. Res. Lett. 21, 1121.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nagy, A.F. et al. (2004). The Plasma Environment of Mars. In: Winterhalter, D., Acuña, M., Zakharov, A. (eds) Mars’ Magnetism and Its Interaction with the Solar Wind. Space Sciences Series of ISSI, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-0-306-48604-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48604-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6582-7

  • Online ISBN: 978-0-306-48604-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics