Advertisement

Asymmetric Supernova Explosions

  • P. Höflich
  • L. Wang
  • A. Khokhlov
Part of the Astrophysics and Space Science Library book series (ASSL, volume 302)

Abstract

Core collapse supernovae (SN) are the final stages of stellar evolution in massive stars during which the central region collapses, forms a neutron star (NS) or black hole, and the outer layers are ejected. Recent explosion scenarios assume that the ejection is due to energy deposition by neutrinos into the envelope, but current models with detailed neutrino transport do not produce powerful explosions. There is new and mounting evidence for an asphericity and, in particular, for axial symmetry in several supernovae which may be hard to reconcile within the spherical picture. This evidence includes the observed high polarization and its variation with time, pulsar kicks, high velocity iron-group and intermediate-mass elements observed in remnants, and direct observations of the debris of SN 1987A. Some of the new evidence is discussed in more detail. To be in agreement with the observations, any successful mechanism must invoke some sort of axial symmetry for the explosion. Based on models in literature, we expect no such asymmetries from neutrino driven explosions.

As a limiting case for aspherical explosions, we consider jet-induced/dominated explosions of “classical” core collapse supernovae. Bipolar outflows may be formed as a consequence of an accretion disk around the central object which is formed just after the core collapse, MHD mechanisms, or, maybe, some new instabilities within the neutrino picture. Our study is based on detailed 3-D hydrodynamical and radiation transport models. We demonstrate the influence of the jet properties and of the underlying progenitor structure on the final density and chemical structure. Our calculations show that low velocity, massive jets can explain the observations. Both asymmetric ionization and density/chemical distributions have been identified as crucial for the formation of asymmetric photospheres. Even within the picture of jet-induced explosion, the latter effect alone fails to explain early polarization in core collapse supernovae with a massive, hydrogen-rich envelope such as SN 1999em. The need for an asymmetric distribution of freshly formed 56Ni may lend additional support for the idea that the explosion mechanism itself is asymmetric. Solving neutrino transport is an important ‘component’ to solve the SN problem but, apparently, not the complete solution. A successful model has to include all the effects, i.e. the core bounce, neutrino transport, convective flows and, in addition, significant effects due to rotation and, maybe, magnetic fields. Finally, we discuss observational consequences and tests.

Keywords

Core Collapse Supernova 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. hamb88.
    Ambwani, K., Sutherland, P.G. 1988, ApJ 325, 820ADSCrossRefGoogle Scholar
  2. Arnett W.D., Bahcall J.N., Kirshner, R.P., Woosley, S.E. 1990, ARAA 27, 62Google Scholar
  3. Athay R. 1972 Radiation Transport in Spectral Lines, Reidel Publ.C., DordrechtCrossRefGoogle Scholar
  4. Avrett G., Loeser R. 1992, 7th Cambridge Workshop on Cool Stars, ASP Conference Series 26, 489Google Scholar
  5. Bisnovatyi-Kogan G. 1971, Soviet Astronomy AJ, 14, 652MathSciNetADSGoogle Scholar
  6. Bowers R.L., Wilson J.R. 1982 ApJS 50, 115ADSCrossRefGoogle Scholar
  7. Brown, B.L., Leventhal, M. 1987, ApJ 319, 637ADSCrossRefGoogle Scholar
  8. Burrows A., Hayes J., Fryxell B. 1995, ApJ 450Google Scholar
  9. Caughlan G.R , Fowler A.M., Harris M.J., Zimmerman B.A. 1985, At. Data Nucl. Dat a Tables 32, 197ADSCrossRefGoogle Scholar
  10. Caughlan G.R , Fowler A.M. 1988, Atomic Data Nucl. Table, 40, 283ADSCrossRefGoogle Scholar
  11. Cunto, W., Mendoza, C. 1992 Topbase, IBM Venezuela Scientific CenterGoogle Scholar
  12. Colella, P., Woodward, P.R. 1984, J.Comp.Phys. 54, 174MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. Duncan, R. C. & Thompson, C. 1992, ApJ, 392, L9ADSCrossRefGoogle Scholar
  14. Fesen, R. A. & Gunderson, K. S. 1996, ApJ, 470, 967ADSCrossRefGoogle Scholar
  15. Fryer C.L., Warren M.S. 2002, ApJ, accepted & astro-ph/astro-ph/0206017Google Scholar
  16. Fryxell B., Arnett D., Müller E. 1991, ApJ 367, 619ADSCrossRefGoogle Scholar
  17. Gayet R. 1970, A&A 9, 312ADSGoogle Scholar
  18. Herant M., Benz W., Hix W.R., Fryer C.L., Colgate S.A. 1994, ApJ 435, 339ADSCrossRefGoogle Scholar
  19. Hillebrandt W., Höflich 1991, Nuclear Physics B 19, 113CrossRefGoogle Scholar
  20. Hillebrandt W. 1982, ApJ 103, 147Google Scholar
  21. Hoyle F., Fowler W. A. 1960, ApJ 132, 565ADSCrossRefGoogle Scholar
  22. Höflich, P. 2002a, New Astronomy 46, 475 & astro-ph/0110098Google Scholar
  23. Höflich, P. 2002b, in: Stellar Atmospheric Modelling, ed. Hubeny, Mihalas & Werner, ASP Conference Series, in press & astro-ph/0207103Google Scholar
  24. Höflich, P., Khokhlov A.M., Wang L. 2002, in: 20th Texas ConverenceGoogle Scholar
  25. Höflich P., Straniero O., Limongi M. Dominguez I. Chieffi A. 2000, 7th TexMexConference, eds. W. Lee & S. Torres-Peimbert, UNAM-Publ., in press & astro-ph/005037Google Scholar
  26. Höflich P., Wheeler, J.C., Thielemann E-K. 1998. ApJ 495, 617ADSCrossRefGoogle Scholar
  27. Höflich P., Wheeler, J.C., Hines, D., Trammell S. 1995, ApJ 459, 307CrossRefGoogle Scholar
  28. Höflich, P. 1995, ApJ 443, 89ADSCrossRefGoogle Scholar
  29. Höflich, P., Müller, E., & Khokhlov, A. 1993, A&A, 268, 570ADSGoogle Scholar
  30. Höflich, P., Khokhlov, A., & Mueller, E. 1992, A&A, 259, 549ADSGoogle Scholar
  31. Höflich, P. 1990, A quantitative analysis of type II supernovae atmospheres, thesis submitted in partial fulfillment of the conditions for admission to the degree of Dr.rer.nat.habil., U München, MPA 563Google Scholar
  32. Höflich, P., Müller E., Khokhlov A. 1993, A&A 268, 570ADSGoogle Scholar
  33. Höflich, P., Müller E., Khokhlov A. 1992, A&A 259, 243Google Scholar
  34. Höflich, P. 1991 A&A 246, 481ADSGoogle Scholar
  35. Höflich, P. 1988, PASP 7, 434Google Scholar
  36. Howell, D. A., Höflich, P., Wang, L., & Wheeler, J. C. 2001, ApJ, 556, 302ADSCrossRefGoogle Scholar
  37. Hughes J.P., Rakowski C.E., Burrows D.N., Slane P.O. 2001, AJ, in press & astro-ph/9910474Google Scholar
  38. Janka H.T. & Müller E., 1994 A&A 290, 496ADSGoogle Scholar
  39. Jeffrey D.J., 1991, ApJ, 375, 264ADSCrossRefGoogle Scholar
  40. Khokhlov A.M., Höflich P. 2001, in: 1st KIAS Astrophysics, IAP-Publishing, ed. I. Yi, in press & astro-ph/0011023Google Scholar
  41. Khokhlov A., Höflich P., Oran E.S., Wheeler J.C. P, Wang L., 1999, ApJ 524, L107ADSCrossRefGoogle Scholar
  42. Khokhlov, A.M. 1998, J.Comput.Phys., 143, 519MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. Kifonidis K., Plewa T., Janka H.T., Müller E. 2000, ApJ 531, 123ADSCrossRefGoogle Scholar
  44. Kouveliotou, C., Strohmayer, T., Hurley, K., Van Paradijs, J., Finger, M. H., Dieters, S., Woods, P., Thompson, C. & Duncan, R. C. 1998, ApJ, 510, 115CrossRefGoogle Scholar
  45. Kurucz R.L. 1995, CD-23, Center for AstrophysicsGoogle Scholar
  46. Kurucz R.L. 1991, CD-1, Center for AstrophysicsGoogle Scholar
  47. Lucy L.B. 1988, Proc. of the 4th George Mason conference, ed. by M. Kafatos, Cambridge University Press, p. 323Google Scholar
  48. LeBlanc, J. M. & Wilson, J. R. 1970, ApJ, 161, 541ADSCrossRefGoogle Scholar
  49. Leonard D.C., Filippenko, A.V., Barth A.J., Matheson T. 2000, ApJ 536, 239ADSCrossRefGoogle Scholar
  50. Mendez R.H., Clocchiatti A., Benvenuto O.G., Feinstein C. Marraco H. 1977, ApJ 334, 295ADSCrossRefGoogle Scholar
  51. Mezzacappa A., Liebendoerfer M., Bronson Messer O.E. Hix R., Thielemann F-K, Bruenn S.W. 2001, Phy.Rev.Let., acceptedGoogle Scholar
  52. Mihalas, D. & Mihalas, B. W. 1984, ‘Foundation of Radiation Hydrodynamics’, New York, Oxford University PressGoogle Scholar
  53. Mihalas D., Kunasz R.B., Hummer D.G. 1975Google Scholar
  54. Mihalas D., Kunasz R.B., Hummer D.G. 1976Google Scholar
  55. Mihalas D., Kunasz R.B., Hummer D.G. 1976bGoogle Scholar
  56. Mönchmeyer R., Schaefer G., Mueller E., Kates R.E. 1991 A&A 246, 417ADSGoogle Scholar
  57. Müller E., Janka H.T. 1997, A&A 317, 140ADSGoogle Scholar
  58. Müller E., Hillebrandt W., Orio M., Höflich P., Mönchmeyer R., Fryzell B.A. 1989, A&A 220, 167ADSGoogle Scholar
  59. Nisenson P., Papaliolios C., Karovska M., Noyes R. 1988, ApJ 324, 35ADSCrossRefGoogle Scholar
  60. Ostriker, J. P. & Gunn, J. E. 1971, ApJ, 164, L95ADSCrossRefGoogle Scholar
  61. Ramp M., Müller E., Ruffert M. 1998, A&A 332, 969ADSGoogle Scholar
  62. Ramp M. and Janka, H.-T. 2000, ApJ 593, L33ADSCrossRefGoogle Scholar
  63. Saenz R.A., Shapiro S.L. 1981, ApJ 244, 1033ADSCrossRefGoogle Scholar
  64. Schaefer B. 2000, ApJ 533, 21ADSCrossRefGoogle Scholar
  65. Seaton M.J. 1960, Rep. Prog. Phys. 23, 313ADSCrossRefGoogle Scholar
  66. Steinmetz M., Höflich P. 1992, A&A 257, 641ADSGoogle Scholar
  67. Stone, J. M., Mihalas, D., & Norman, M. L. 1992, ApJs, 80, 819ADSCrossRefGoogle Scholar
  68. Strom R., Johnston H.M., Verbunt F., Aschenbach B. 1995, Nature, 373, 587ADSCrossRefGoogle Scholar
  69. Symbalisty E.M.D. 1984, ApJ 285, 729ADSCrossRefGoogle Scholar
  70. Thielemann F.-K., Nomoto K., Hashimoto M. 1994, in: Supernovae, Les Houcheseds.Bludman R., Mochkovitch J., Mochkovitch J., Zinn-Justin, Elsevier, Amsterdam, p 629Google Scholar
  71. Trammell S., Hines D., Wheeler J.C. 1993, ApJ 414, 21ADSCrossRefGoogle Scholar
  72. Tueller J., Barthelmy S., Gehrels N., Leventhal M., MacCallum C.J., Teegarden B.J. 1991, in: Supernovae, ed. S.E. Woosley, Springer Press, p. 278CrossRefGoogle Scholar
  73. Van Riper K.A. 1978, ApJ 221, 304ADSCrossRefGoogle Scholar
  74. Wang L. et al. 2002a, ApJ, in press & astro-ph/0205337Google Scholar
  75. Wang L., Howell A., Höflich P., Wheeler J.C. 2002b, ApJ, 550, 1030ADSCrossRefGoogle Scholar
  76. Wang L. et al. 2001a, The Bipolar Ejecta of SN1987A, ApJ,Google Scholar
  77. Wang, L., Wheeler, J. C., Li, Z. W., & Clocchiatti, A. 1996, ApJ, 467, 435ADSCrossRefGoogle Scholar
  78. Wang, L., Wheeler, J.C., Höflich, P. 1997, ApJ, 476, 27ADSCrossRefGoogle Scholar
  79. Wiescher M., Görres J., Thielemann, F.K. 1990, ApJ 363, 340ADSCrossRefGoogle Scholar
  80. Yamada S., Janka H.T., Suzuki H. 1999, A&A 344, 533ADSGoogle Scholar
  81. Zwerger T., Müller E. 1997, A&A 320, 209ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • P. Höflich
    • 1
  • L. Wang
    • 2
  • A. Khokhlov
    • 3
  1. 1.Department of AstronomyUniversity of TexasAustinUSA
  2. 2.Lawrence Berkeley LabBerkeleyUSA
  3. 3.Naval Research LabUSA

Personalised recommendations