Advertisement

Radioactive Decay in Core-Collapse Supernovae

Motivation for Asymmetry
  • Aimee L. Hungerford
Part of the Astrophysics and Space Science Library book series (ASSL, volume 302)

Abstract

High energy emission from supernovae provide a direct window into the quantity and distribution of radioactive elements produced in these explosions. This information has proven to be of tremendous importance in inferring details of the shock evolution in core-collapse supernovae. This chapter highlights the theoretical advances in core-collapse explosion simulations which have been motivated by the many surprises in γ-ray observations. In particular, the presence of asymmetries in the explosion, as inferred from the high energy spectra, are emphasized. Recent simulations combining supernova explosion calculations with 3D Monte Carlo γ-ray transport are presented. The diagnostic capability of the high energy emission to distinguish mild explosion asymmetries is demonstrated.

Keywords

Core-Collapse Supernovae gamma-rays radioactive decay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambwani, K. & Sutherland, P. 1988, ApJ, 325, 820ADSCrossRefGoogle Scholar
  2. Arnett, W. D., Bahcall, J. N., Kirshner, R. P., & Woosley, S. E. 1989, ARA&A, 27, 629ADSCrossRefGoogle Scholar
  3. Ashworth, W., 1980, Journal Hist. Astron., 11, 1ADSGoogle Scholar
  4. Bazan, G.,& Arnett, D 1998, ApJ, 496, 316ADSCrossRefGoogle Scholar
  5. Blinnikov, S. I., Dunina-Barkovskaya, N. V., & Nadyozhin, D. K. 1996, ApJS, 106, 171ADSCrossRefGoogle Scholar
  6. Burrows, A., Hayes, J., & Fryxell, B. A. 1995, ApJ, 450, 830ADSCrossRefGoogle Scholar
  7. Burrows, A., & Hayes, J. 1996, PRL, 76, 352ADSCrossRefGoogle Scholar
  8. Chevalier, R. A., & Klein, R. I. 1978, ApJ, 269, 281Google Scholar
  9. Chevalier, R. A., & Soker, N. 1989, ApJ, 341, 867ADSCrossRefGoogle Scholar
  10. Colgate, S. A., Petschek, A. G., Kriese, J. T. 1980, ApJ, 237, L81ADSCrossRefGoogle Scholar
  11. Cook, W. R., Palmer, D. M., Prince, T. A., Schindler, S. M., Starr, C. H., & Stone, E. C. 1988, ApJ, 334, L87ADSCrossRefGoogle Scholar
  12. Dotani, T., Hayashida, K., Inoue, H., Itoh, M., & Koyama, K. 1987, Nature, 330, 230ADSCrossRefGoogle Scholar
  13. Fesen, R., Becker, R. & Blair, W., 1987, ApJ, 313, 378ADSCrossRefGoogle Scholar
  14. Fryer, C.L., Burrows, A., & Benz, W. 1996, ApJ, 496, 333ADSCrossRefGoogle Scholar
  15. Fryer, C. L., & Heger, A. 2000, ApJ, 541, 1033ADSCrossRefGoogle Scholar
  16. Fryer, C. L., & Kalogera, V. 2001, ApJ, 554, 548ADSCrossRefGoogle Scholar
  17. Haas, M. R., Erickson, E. F., Lord, S. D., Hollenbach, D. J., Colgan, S. W. J., & Burton, M. G. 1990, ApJ, 360, 257ADSCrossRefGoogle Scholar
  18. Herant, M., & Benz, W. 1992, ApJ, 387, 294ADSCrossRefGoogle Scholar
  19. Herant, M., & Woosley, S.E. 1994, ApJ, 425, 814ADSCrossRefGoogle Scholar
  20. Herant, M., Benz, W., Hix, W.R., Fryer, C.L. & Colgate, S.A. 1994, ApJ, 435, 339ADSCrossRefGoogle Scholar
  21. Höflich, P., 1991, A&A, 246, 481ADSGoogle Scholar
  22. Hughes, J., Rakowski, C., Burrows, D. & Slane, P., 2000, ApJ, 528, L109ADSCrossRefGoogle Scholar
  23. Hungerford, A., Fryer, C. & Warren, M., ApJ, 594, 390Google Scholar
  24. Iyudin, A., Diehl, R., Bloemen, H., Hermsen, W., Lichti, G., Morris, D., Ryan, J., Schoenfelder, V., Steinle, H., Varendorff, M., de Vries, C. & Winkler, C., 1994, A&A, 284, L 1ADSGoogle Scholar
  25. Iyudin, A., 1997, Nuclear Phys. A, 654, 900cGoogle Scholar
  26. Janka, H.-T. & Mönchmeyer, R., 1989, A&A, 209, L5ADSGoogle Scholar
  27. Janka, H.-Th., & Müller, E. 1996, A&A, 306, 167ADSGoogle Scholar
  28. Khokhlov, A.M., Höflich, P.A., Oran, E.S., Wheeler, J.C., Wang, L., Chtchelkanova, A. Yu. 1999, ApJ, 524, L107ADSCrossRefGoogle Scholar
  29. Kumagai, S., Shigeyama, T., Nomoto, K., Hashimoto, M. & Itoh, S., 1993, A&A, 273, 153ADSGoogle Scholar
  30. Lai, D. 2000, ApJ, 540, 946ADSCrossRefGoogle Scholar
  31. Lederer, C. M., & Shirley, V. S. 1978, Table of the Isotopes (7th ed., New York; Wiley)Google Scholar
  32. Leonard, D. C., & Filippenko, A. V. 2001, PASP, 113, 920ADSCrossRefGoogle Scholar
  33. Mahoney, W. A., Varnell, L. S., Jacobson, A. S., Ling, J. C., Radocinski, R. G., & Wheaton, Wm. A. 1988, ApJ, 334, L81ADSCrossRefGoogle Scholar
  34. Matz, S. M., Share, G. H., Leising, M. D., Chupp, E. L., & Vestrand, W. T. 1988, Nature, 331, 416ADSCrossRefGoogle Scholar
  35. Mochizuki, Y., Takahashi, K., Janka, H-T., Hillebrandt, W. & Diehl, R., 1999, A&A, 346, 831ADSGoogle Scholar
  36. Mönchmeyer, R. & Müller, E., 1989, in NATO ASI series, Timing Neutron Stars, ed. H. Ogelman & E.P.J. van den Heuvel (New York: ASI)Google Scholar
  37. Nagataki, S., Shimizu, T.M., & Sato, K. 1998, ApJ, 495, 413ADSCrossRefGoogle Scholar
  38. Nagataki, S., Hashimoto, M., Sato, K., Yamada, S. & Mochizuki, Y., 1998, ApJ, 492, L45ADSCrossRefGoogle Scholar
  39. Nagataki, S. 2000, ApJS, 127, 141ADSCrossRefGoogle Scholar
  40. Pinto, P. A., & Woosley, S. E. 1988a, ApJ, 329, 820ADSCrossRefGoogle Scholar
  41. Pinto, P. A., & Woosley, S. E. 1988b, Nature, 333, 534ADSCrossRefGoogle Scholar
  42. Plechaty, E., Cullen, D. & Howerton, R., 1981, LLNL Rep. UCRL-50400, Vol. 6(rev. 3[1987])Google Scholar
  43. Podsiadlowski, P., Nomoto, K., Maeda, K., Nakamura, T., Mazzali, P., & Schmidt, B. 2002, ApJ, 567, 491ADSCrossRefGoogle Scholar
  44. Reed, J., Hester, J, Fabian, A. & Winkler, P., 1995, ApJ, 440, 706ADSCrossRefGoogle Scholar
  45. Spyromilio, J., Meikle, W. P. S., & Allen, D. A. 1990, MNRAS, 242, 669ADSGoogle Scholar
  46. Sunyaev, R., Kaniovskii, A., Efremov, V., Gilfanov, M., & Churazov, E. 1987, Nature, 330, 227ADSCrossRefGoogle Scholar
  47. Sunyaev, R., Kaniovskii, A., Efremov, V., Grebenev, S., Kuznetsov, A., Engelhauser, J., Döbereiner, S., Pietsch, W., Reppin, C., Tuümper, J., Kendziorra, E., Maisack, M., Mony, B., & Staubert, R., 1990, Soviet Astron. Lett., 16(3), 171ADSGoogle Scholar
  48. Timmes, F., Woosley, S., Hartmann, D. & Hoffman, R., ApJ, 464, 332Google Scholar
  49. Tueller, J., Barthelmy, S., Gehrels, N., Teegarden, B. J., Leventhal, M., & MacCallum, C. J. 1990, ApJ, 351, L41ADSCrossRefGoogle Scholar
  50. Turatto, M., Mazzali, P. A., Young, T. R., Nomoto, K., Iwamoto, K., Benetti, S., Cappallaro, E., Danziger, I. J., de Mello, D. F., Phillips, M. M., Suntzeff, N. B., Clocchiatti, A., Piemonte, A., Leibundgut, B., Covarrubias, R., Maza, J., Sollerman, J. 1998, ApJ, 498, L129ADSCrossRefGoogle Scholar
  51. Umeda, H. & Nomoto, K. 2002, ApJ, 565, 385ADSCrossRefGoogle Scholar
  52. Vink, J., Laming, J. M., Kaastra, J., Bleeker, J., Bloemen, H. & Oberlack, U., 2001, ApJ, 560, L79ADSCrossRefGoogle Scholar
  53. Wang, L., Howell, D. A., Höflich, P., Wheeler, J. C. 2001, ApJ, 556, 302ADSCrossRefGoogle Scholar
  54. Warren, M. S. & Salmon, J. K. 1993, Supercomputing ‘93, IEEE Comp. Soc, pg. 12Google Scholar
  55. Weaver, T. A., & Woosley, S. E. 1980, in AIP Conf. Proc. 63, Supernovae Spectra, ed. R. Meyerott & G. H. Gillespie (New York: AIP), 15Google Scholar
  56. Weaver, T. A., & Woosley, S. E. 1993, Phys. Rep., 227, 65ADSCrossRefGoogle Scholar
  57. Woosley, S. E. 1988, ApJ, 330, 218ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Aimee L. Hungerford
    • 1
    • 2
  1. 1.Transport MethodsLos Alamos National LaboratoryLos AlamosUSA
  2. 2.University of ArizonaTucsonUSA

Personalised recommendations