Neutrino Transport in Core Collapse Supernovae

  • Anthony Mezzacappa
  • Matthias Liebendörfer
  • Christian Y. Cardall
  • O. E. Bronson Messer
  • Stephen W. Bruenn
Part of the Astrophysics and Space Science Library book series (ASSL, volume 302)


Neutrino production, transport, and interaction is arguably the single-most important component of a core collapse supernova model. Neutrinos are believed to be responsible for powering these supernovae, in part or entirely, and their production and transport set the stage for the radiation magnetohydrodynamics of stellar core collapse and bounce, which provides the initial conditions for the post-stellar-core-bounce dynamics. Neutrino transport is governed by multidimensional, phase-space, integro-partial differential kinetic equations. The solution of these equations dominates the computational challenge in simulating this supernova class. We present the neutrino transport and neutrino radiation hydrodynamics equations involved, and their finite differencing, and briefly discuss their solution. We use the spherically symmetric (spatially one-dimensional) case to illustrate the equations and the issues involved, but give the general formalism for the spatially multidimensional case as well. We conclude by briefly discussing the implications of the now experimentally measured nonzero neutrino masses.


Supernovae Neutrinos Transport Kinetic Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnett, W. D. (1977). Astrophysical Journal 218:815.ADSCrossRefGoogle Scholar
  2. Balescu, R. (1975). Equilibrium and Nonequilibrium Statistical Mechanics. New York: Wiley-Interscience.zbMATHGoogle Scholar
  3. Baron, E. A., Cooperstein, J., and Kahana, S. (1985). Nuclear Physics, A440:744.ADSGoogle Scholar
  4. Bethe, H. A. and Brown, G. (1985). Scientific American, 252:60.ADSCrossRefGoogle Scholar
  5. Bethe, H. A. (1990). Reviews of Modern Physics, 62:801.ADSCrossRefGoogle Scholar
  6. Bethe, H. A. and Wilson, J. R. (1985). Astrophysical Journal, 295:14.ADSCrossRefGoogle Scholar
  7. Bowers, R. L. and Wilson, J. R. (1982). Astrophysical Journal Supplement, 50:115.ADSCrossRefGoogle Scholar
  8. Brown, G., Bethe, H. A., and Baym, G. (1982). Nucl Phys. A, 375:481.ADSCrossRefGoogle Scholar
  9. Bruenn, S. W. (1985). Astrophysical Journal Supplement, 58:771.ADSCrossRefGoogle Scholar
  10. Bruenn, S. W. (1993). In Guidry, M. W. and Strayer, M. R., editors, First Symposium on Nuclear Physics in the Universe, page 31. Bristol. IOP Publishing.Google Scholar
  11. Bruenn, S. W., DeNisco, K. R., and Mezzacappa, A. (2001). Astrophysical Journal, 560:326.ADSCrossRefGoogle Scholar
  12. Bruenn, S. W. and Dineva, T. (1996). Astrophysical Journal Letters, 458:L71.ADSCrossRefGoogle Scholar
  13. Buras, R., Rampp, ML, Janka, H.-T., and Kifonidis, K. (2003). Physical Review Letters, submitted (astro-ph/0303171).Google Scholar
  14. Burrows, A. (1987). Physics Today Google Scholar
  15. Burrows, A. (2003). This volume.Google Scholar
  16. Burrows, A. and Goshy, J. (1993). Astrophysical Journal Letters, 416:L75.ADSCrossRefGoogle Scholar
  17. Burrows, A., Hayes, J., and Fryxell, B. A. (1995). Astrophysical Journal, 450:830.ADSCrossRefGoogle Scholar
  18. Burrows, A., Young, T., Pinto, P., Eastman, R., and Thompson, T. A. (2000). Astrophysical Journal, 539:865.ADSCrossRefGoogle Scholar
  19. Cardall, C. Y. and Mezzacappa, A. (2002). Physical Review D, in press (astro-ph/0212460).Google Scholar
  20. Castor, J. (1972). Astrophysical Journal, 178:779.ADSCrossRefGoogle Scholar
  21. Colgate, S. A. and White, R. H. (1966). Astrophysical Journal, 143:626.ADSCrossRefGoogle Scholar
  22. Cooperstein, J., Van Den Horn, L. J., and Baron, E. A. (1986). Astrophysical Journal, 309:653.ADSCrossRefGoogle Scholar
  23. Fryer, C. L. and Heger, A. (2000). Astrophysical Journal, 541:1033.ADSCrossRefGoogle Scholar
  24. Fryer, C. L. and Warren, M. S. (2002). Astrophysical Journal, 574:L65.ADSCrossRefGoogle Scholar
  25. Fuller, G. M., Mayle, R., Meyer, B. S., and Wilson, J. R. (1992). Astrophysical Journal, 389:517.ADSCrossRefGoogle Scholar
  26. Herant, M., Benz, W., Hix, W. R., Fryer, C. L., and Colgate, S. A. (1994). Astrophysical Journal, 435:339.ADSCrossRefGoogle Scholar
  27. Hillebrandt, W., Nomoto, K., and Wolff, R. (1984). Astronomy and Astrophysics, 133:175.ADSGoogle Scholar
  28. Janka, H.-T. (2003). This volume.Google Scholar
  29. Janka, H.-T. and Müller, E. (1996). Astronomy and Astrophysics, 306:167.ADSGoogle Scholar
  30. Levermore, C. D. and Pomraning, G. C. (1981). Astrophysical Journal, 248:321.ADSCrossRefGoogle Scholar
  31. Lewis, E. and Miller, W. (1984). Computational Methods of Neutron Transport. New York: Wiley-Interscience.Google Scholar
  32. Liebendorfer, M., Mezzacappa, A., Thielemann, E, Messer, O. E., Hix, W. R., and Bruenn, S. W. (2001). Physical Review D, 63:103004.ADSCrossRefGoogle Scholar
  33. Liebendoerfer, M., Rampp, M., Janka, H.-T., and Mezzacappa, A. (2003). In preparation.Google Scholar
  34. Liebendorfer, M. (2000). PhD thesis, University of Basel, Basel, Switzerland.Google Scholar
  35. MacFadyen, A. I. and Woosley, S. E. (1999). Astrophysical Journal, 524:262.ADSCrossRefGoogle Scholar
  36. Mezzacappa, A. and Bruenn, S. W. (1993a). Astrophysical Journal, 405:669.ADSCrossRefGoogle Scholar
  37. Mezzacappa, A. and Bruenn, S. W. (1993b). Astrophysical Journal, 405:637.ADSCrossRefGoogle Scholar
  38. Mezzacappa, A. and Bruenn, S. W. (1999). In Spooner, N. J. C. and Kudryavtsev, V., editors, The Identification of Dark Matter, page 655. World Scientific, Singapore.Google Scholar
  39. Mezzacappa, A., Calder, A. C., Bruenn, S. W., Blondin, J. M., Guidry, M. W., Strayer, M. R., and Umar, A. S. (1998a). Astrophysical Journal 493:848.ADSCrossRefGoogle Scholar
  40. Mezzacappa, A., Calder, A. C., Bruenn, S. W., Blondin, J. M., Guidry, M. W., Strayer, M. R., and Umar, A. S. (1998b). Astrophysical Journal, 495:911.ADSCrossRefGoogle Scholar
  41. Mezzacappa, A., Liebendorfer, M., Messer, O. E., Hix, W. R., Thielemann, F., and Bruenn, S. W. (2001). Physical Review Letters, 86:1935.Google Scholar
  42. Mihalas, D. and Mihalas, B.. (1975). Foundations of Radiation Hydrodynamics. New York: Oxford University Press.Google Scholar
  43. Mueller, E. (1991). In de Loore, C., editor, Late Stages of Stellar Evolution: Computational Methods in Astrophysical Hydrodynamics, page 97. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  44. Myra, E. S., Bludman, S. A., Hoffman, Y., Lichtenstadt, I., Sack, N., and Van Riper, K. A. (1987). Astrophysical Journal, 318:744.ADSCrossRefGoogle Scholar
  45. Rampp, M. and Janka, H.-T. (2000). Astrophysical Journal, 539:L33.ADSCrossRefGoogle Scholar
  46. Rampp, M. and Janka, H.-T. (2002). Astronomy and Astrophysics, 396:361.ADSCrossRefGoogle Scholar
  47. Shapiro, S. and Teukolsky, S. (1983). Black Holes, White Dwarfs, and Neutron Stars. New York: Wiley-Interscience.CrossRefGoogle Scholar
  48. Swesty, F. and Lattimer, J. (1994). Astrophysical Journal, 425:195.ADSCrossRefGoogle Scholar
  49. Symbalisty, E. M. D. (1984). Astrophysical Journal, 285:729.ADSCrossRefGoogle Scholar
  50. Thompson, T., Burrows, A., and Pinto, P. (2002). Astrophysical Journal, in press (astro-ph/0211194).Google Scholar
  51. Van Riper, K. A. and Lattimer, J. M. (1981). Astrophysical Journal, 249:270.ADSCrossRefGoogle Scholar
  52. Wilson, J. R. (1985). In Centrella, J. M., LeBlanc, J. M., and Bowers, R. L., editors, Numerical Astrophysics, page 422. Boston. Jones and Bartlett.Google Scholar
  53. Wilson, J. R. and Mayle, R. W. (1993). Physics Reports, 227:97.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Anthony Mezzacappa
    • 1
  • Matthias Liebendörfer
    • 1
    • 2
    • 6
  • Christian Y. Cardall
    • 2
    • 3
    • 4
  • O. E. Bronson Messer
    • 1
    • 2
    • 4
  • Stephen W. Bruenn
    • 5
  1. 1.Physics DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Department of Physics and AstronomyUniversity of TennesseeKnoxvilleUSA
  3. 3.Physics DivisionOak Ridge National LaboratoryOak RidgeUSA
  4. 4.Joint Institute for Heavy Ion ResearchOak RidgeUSA
  5. 5.Department of PhysicsFlorida Atlantic UniversityBoca RatonUSA
  6. 6.CITAUniversity of TorontoCanada

Personalised recommendations