Skip to main content

Neutrino Transport in Core Collapse Supernovae

  • Chapter
Stellar Collapse

Abstract

Neutrino production, transport, and interaction is arguably the single-most important component of a core collapse supernova model. Neutrinos are believed to be responsible for powering these supernovae, in part or entirely, and their production and transport set the stage for the radiation magnetohydrodynamics of stellar core collapse and bounce, which provides the initial conditions for the post-stellar-core-bounce dynamics. Neutrino transport is governed by multidimensional, phase-space, integro-partial differential kinetic equations. The solution of these equations dominates the computational challenge in simulating this supernova class. We present the neutrino transport and neutrino radiation hydrodynamics equations involved, and their finite differencing, and briefly discuss their solution. We use the spherically symmetric (spatially one-dimensional) case to illustrate the equations and the issues involved, but give the general formalism for the spatially multidimensional case as well. We conclude by briefly discussing the implications of the now experimentally measured nonzero neutrino masses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnett, W. D. (1977). Astrophysical Journal 218:815.

    Article  ADS  Google Scholar 

  • Balescu, R. (1975). Equilibrium and Nonequilibrium Statistical Mechanics. New York: Wiley-Interscience.

    MATH  Google Scholar 

  • Baron, E. A., Cooperstein, J., and Kahana, S. (1985). Nuclear Physics, A440:744.

    ADS  Google Scholar 

  • Bethe, H. A. and Brown, G. (1985). Scientific American, 252:60.

    Article  ADS  Google Scholar 

  • Bethe, H. A. (1990). Reviews of Modern Physics, 62:801.

    Article  ADS  Google Scholar 

  • Bethe, H. A. and Wilson, J. R. (1985). Astrophysical Journal, 295:14.

    Article  ADS  Google Scholar 

  • Bowers, R. L. and Wilson, J. R. (1982). Astrophysical Journal Supplement, 50:115.

    Article  ADS  Google Scholar 

  • Brown, G., Bethe, H. A., and Baym, G. (1982). Nucl Phys. A, 375:481.

    Article  ADS  Google Scholar 

  • Bruenn, S. W. (1985). Astrophysical Journal Supplement, 58:771.

    Article  ADS  Google Scholar 

  • Bruenn, S. W. (1993). In Guidry, M. W. and Strayer, M. R., editors, First Symposium on Nuclear Physics in the Universe, page 31. Bristol. IOP Publishing.

    Google Scholar 

  • Bruenn, S. W., DeNisco, K. R., and Mezzacappa, A. (2001). Astrophysical Journal, 560:326.

    Article  ADS  Google Scholar 

  • Bruenn, S. W. and Dineva, T. (1996). Astrophysical Journal Letters, 458:L71.

    Article  ADS  Google Scholar 

  • Buras, R., Rampp, ML, Janka, H.-T., and Kifonidis, K. (2003). Physical Review Letters, submitted (astro-ph/0303171).

    Google Scholar 

  • Burrows, A. (1987). Physics Today

    Google Scholar 

  • Burrows, A. (2003). This volume.

    Google Scholar 

  • Burrows, A. and Goshy, J. (1993). Astrophysical Journal Letters, 416:L75.

    Article  ADS  Google Scholar 

  • Burrows, A., Hayes, J., and Fryxell, B. A. (1995). Astrophysical Journal, 450:830.

    Article  ADS  Google Scholar 

  • Burrows, A., Young, T., Pinto, P., Eastman, R., and Thompson, T. A. (2000). Astrophysical Journal, 539:865.

    Article  ADS  Google Scholar 

  • Cardall, C. Y. and Mezzacappa, A. (2002). Physical Review D, in press (astro-ph/0212460).

    Google Scholar 

  • Castor, J. (1972). Astrophysical Journal, 178:779.

    Article  ADS  Google Scholar 

  • Colgate, S. A. and White, R. H. (1966). Astrophysical Journal, 143:626.

    Article  ADS  Google Scholar 

  • Cooperstein, J., Van Den Horn, L. J., and Baron, E. A. (1986). Astrophysical Journal, 309:653.

    Article  ADS  Google Scholar 

  • Fryer, C. L. and Heger, A. (2000). Astrophysical Journal, 541:1033.

    Article  ADS  Google Scholar 

  • Fryer, C. L. and Warren, M. S. (2002). Astrophysical Journal, 574:L65.

    Article  ADS  Google Scholar 

  • Fuller, G. M., Mayle, R., Meyer, B. S., and Wilson, J. R. (1992). Astrophysical Journal, 389:517.

    Article  ADS  Google Scholar 

  • Herant, M., Benz, W., Hix, W. R., Fryer, C. L., and Colgate, S. A. (1994). Astrophysical Journal, 435:339.

    Article  ADS  Google Scholar 

  • Hillebrandt, W., Nomoto, K., and Wolff, R. (1984). Astronomy and Astrophysics, 133:175.

    ADS  Google Scholar 

  • Janka, H.-T. (2003). This volume.

    Google Scholar 

  • Janka, H.-T. and Müller, E. (1996). Astronomy and Astrophysics, 306:167.

    ADS  Google Scholar 

  • Levermore, C. D. and Pomraning, G. C. (1981). Astrophysical Journal, 248:321.

    Article  ADS  Google Scholar 

  • Lewis, E. and Miller, W. (1984). Computational Methods of Neutron Transport. New York: Wiley-Interscience.

    Google Scholar 

  • Liebendorfer, M., Mezzacappa, A., Thielemann, E, Messer, O. E., Hix, W. R., and Bruenn, S. W. (2001). Physical Review D, 63:103004.

    Article  ADS  Google Scholar 

  • Liebendoerfer, M., Rampp, M., Janka, H.-T., and Mezzacappa, A. (2003). In preparation.

    Google Scholar 

  • Liebendorfer, M. (2000). PhD thesis, University of Basel, Basel, Switzerland.

    Google Scholar 

  • MacFadyen, A. I. and Woosley, S. E. (1999). Astrophysical Journal, 524:262.

    Article  ADS  Google Scholar 

  • Mezzacappa, A. and Bruenn, S. W. (1993a). Astrophysical Journal, 405:669.

    Article  ADS  Google Scholar 

  • Mezzacappa, A. and Bruenn, S. W. (1993b). Astrophysical Journal, 405:637.

    Article  ADS  Google Scholar 

  • Mezzacappa, A. and Bruenn, S. W. (1999). In Spooner, N. J. C. and Kudryavtsev, V., editors, The Identification of Dark Matter, page 655. World Scientific, Singapore.

    Google Scholar 

  • Mezzacappa, A., Calder, A. C., Bruenn, S. W., Blondin, J. M., Guidry, M. W., Strayer, M. R., and Umar, A. S. (1998a). Astrophysical Journal 493:848.

    Article  ADS  Google Scholar 

  • Mezzacappa, A., Calder, A. C., Bruenn, S. W., Blondin, J. M., Guidry, M. W., Strayer, M. R., and Umar, A. S. (1998b). Astrophysical Journal, 495:911.

    Article  ADS  Google Scholar 

  • Mezzacappa, A., Liebendorfer, M., Messer, O. E., Hix, W. R., Thielemann, F., and Bruenn, S. W. (2001). Physical Review Letters, 86:1935.

    Google Scholar 

  • Mihalas, D. and Mihalas, B.. (1975). Foundations of Radiation Hydrodynamics. New York: Oxford University Press.

    Google Scholar 

  • Mueller, E. (1991). In de Loore, C., editor, Late Stages of Stellar Evolution: Computational Methods in Astrophysical Hydrodynamics, page 97. Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Myra, E. S., Bludman, S. A., Hoffman, Y., Lichtenstadt, I., Sack, N., and Van Riper, K. A. (1987). Astrophysical Journal, 318:744.

    Article  ADS  Google Scholar 

  • Rampp, M. and Janka, H.-T. (2000). Astrophysical Journal, 539:L33.

    Article  ADS  Google Scholar 

  • Rampp, M. and Janka, H.-T. (2002). Astronomy and Astrophysics, 396:361.

    Article  ADS  Google Scholar 

  • Shapiro, S. and Teukolsky, S. (1983). Black Holes, White Dwarfs, and Neutron Stars. New York: Wiley-Interscience.

    Book  Google Scholar 

  • Swesty, F. and Lattimer, J. (1994). Astrophysical Journal, 425:195.

    Article  ADS  Google Scholar 

  • Symbalisty, E. M. D. (1984). Astrophysical Journal, 285:729.

    Article  ADS  Google Scholar 

  • Thompson, T., Burrows, A., and Pinto, P. (2002). Astrophysical Journal, in press (astro-ph/0211194).

    Google Scholar 

  • Van Riper, K. A. and Lattimer, J. M. (1981). Astrophysical Journal, 249:270.

    Article  ADS  Google Scholar 

  • Wilson, J. R. (1985). In Centrella, J. M., LeBlanc, J. M., and Bowers, R. L., editors, Numerical Astrophysics, page 422. Boston. Jones and Bartlett.

    Google Scholar 

  • Wilson, J. R. and Mayle, R. W. (1993). Physics Reports, 227:97.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mezzacappa, A., Liebendörfer, M., Cardall, C.Y., Messer, O.E.B., Bruenn, S.W. (2004). Neutrino Transport in Core Collapse Supernovae. In: Fryer, C.L. (eds) Stellar Collapse. Astrophysics and Space Science Library, vol 302. Springer, Dordrecht. https://doi.org/10.1007/978-0-306-48599-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-48599-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6567-4

  • Online ISBN: 978-0-306-48599-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics