Advertisement

Explosion Mechanisms of Massive Stars

A Critical Review of Possibilities and Perspectives
  • H.-Thomas Janka
  • Robert Buras
  • Konstantinos Kifonidis
  • Markus Rampp
  • Tomek Plewa
Part of the Astrophysics and Space Science Library book series (ASSL, volume 302)

Abstract

One of the central problems in supernova theory is the question how massive stars explode. Understanding the physical processes that drive the explosion is crucial for linking the stellar progenitors to the final remnants and for predicting observable properties like explosion energies, neutron star and black hole masses, nucleosynthetic yields, explosion anisotropies, and pulsar kicks. In this article we review different suggestions for the explosion mechanism and discuss the constraints that can or cannot be deduced from observations. The prompt hydrodynamical bounce-shock mechanism has turned out not to work for typical stellar iron cores and empirical values of the compressibility of bulk nuclear matter. Magnetohydrodynamical models on the other hand contain a number of imponderabilities and are still far behind the level of refinement that has been achieved in nonmagnetic simulations. In view of these facts the neutrino-driven mechanism must still be considered as the standard paradigm to explain the explosion of ordinary supernovae, although its viability has yet to be demonstrated convincingly. Since spherically symmetric models do not yield explosions, the hope rests on the helpful effects of convection inside the nascent neutron star, which could boost the neutrino luminosity, and convective overturn in the neutrino-heated region behind the stalled shock, which increases the efficiency of neutrino-energy transfer in this layer. Here we present the first two-dimensional simulations of these processes which have been performed with a Boltzmann solver for the neutrino transport and a state-of-the-art description of neutrino-matter interactions. Although our most complete models fail to explode, convection brings them encouragingly close to a success. An explosion could be obtained by just a minor modification of the neutrino transport, in which case the exploding model fulfills important requirements from observations. We discuss necessary improvements on the route to finally successful models.

Keywords

Supernovae Neutrinos Radiation-Hydrodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloy, M.A., Müller, E., Ibáñez, J.M.a, Martí, J.M. a, & MacFadyen, A.I. 2000, Ap. J. (Letters), 531, L119ADSCrossRefGoogle Scholar
  2. Akiyama, S., Wheeler, J.C., Meier, D.L., & Lichtenstadt, I. 2002, Ap. J., in press (astro-ph/0208128)Google Scholar
  3. Bailyn, C.D., Jain R.K., Coppi, P., & Orosz, J.A. 1998, Ap. J., 499, 367ADSCrossRefGoogle Scholar
  4. Balbus, S.A. & Hawley, J.F. 1998, Reviews of Modern Physics, 70, 1ADSCrossRefGoogle Scholar
  5. Baron, E., Bethe, H.A., Brown, G.E., Cooperstein, J., & Kahana, S. 1987, Phys. Rev. Lett., 59, 736Google Scholar
  6. Baron, E. & Cooperstein, J. 1990, Ap. J., 353, 597ADSCrossRefGoogle Scholar
  7. Baron, E., Cooperstein, J., & Kahana, S. 1985, Phys. Rev. Lett., 55, 126ADSCrossRefGoogle Scholar
  8. Bethe, H.A. 1990, Rev. Mod. Phys., 62, 801ADSCrossRefGoogle Scholar
  9. Bethe, H.A. & Wilson, J.R. 1985, Ap. J., 295, 14 (1985)ADSCrossRefGoogle Scholar
  10. Bisnovatyi-Kogan, G.S. 1971, Soviet Astronomy AJ, 14, 652MathSciNetADSGoogle Scholar
  11. Blandford, R.D. & Znajek, R.L. 1977, MNRAS, 179, 433ADSGoogle Scholar
  12. Blondin, J.M., Mezzacappa, A., & DeMarino, C. 2002, Ap. J., in press (astro-phi 0210634)Google Scholar
  13. Bruenn, S.W. 1985, Ap. J. Suppl., 58, 771ADSCrossRefGoogle Scholar
  14. Bruenn, S.W. 1989a, Ap. J., 340, 955ADSCrossRefGoogle Scholar
  15. Bruenn, S.W. 1989b, Ap. J., 341, 385ADSCrossRefGoogle Scholar
  16. Bruenn, S.W. 1993, in Nuclear Physics in the Universe, ed. M.W. Guidry & M.R. Strayer (Bristol: IOP) 31Google Scholar
  17. Bruenn, S.W., De Nisco, K.R., & Mezzacappa, A. 2001, Ap. J., 560, 326ADSCrossRefGoogle Scholar
  18. Buras, R., Janka, H.-Th., Keil, M.-Th., Raffelt, G., & Rampp, M. 2002, Ap. J., submitted (astro-ph/0205006)Google Scholar
  19. Burrows, A. & Sawyer, R.F. 1998, Phys. Rev. C., 58, 554ADSCrossRefGoogle Scholar
  20. Burrows, A. & Sawyer, R.F. 1999, Phys. Rev. C., 59, 510ADSCrossRefGoogle Scholar
  21. Burrows, A., Hayes, J., & Fryxell, B.A.. 1995, Ap. J., 450, 830ADSCrossRefGoogle Scholar
  22. Carter, G.W. & Prakash, M. 2002, Physics Letters B, 525, 249ADSCrossRefGoogle Scholar
  23. Colella, P. & Woodward, P.R. 1984, J. Computational Physics, 54, 174MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. Colgate, S.A. & White, R.H. 1966, Ap. J., 143, 626ADSCrossRefGoogle Scholar
  25. Cordes, J.M. & Chernoff, D.F. 1998, Ap. J., 505, 315ADSCrossRefGoogle Scholar
  26. Daigne, F. & Mochkovitch, R. 2002, Astr. Ap., 388, 189ADSCrossRefGoogle Scholar
  27. Di Matteo, T., Perna, R., & Narayan, R. 2002, Ap. J., 579, 706ADSCrossRefGoogle Scholar
  28. Drenkhahn, G. 2002, Astr. Ap., 387, 714ADSCrossRefGoogle Scholar
  29. Drenkhahn, G. & Spruit, H.C. 2002, Astr. Ap., 391, 1141ADSCrossRefGoogle Scholar
  30. Emanuel, K.A. 1991, Ann. Rev. Fluid Mech., 23, 179ADSCrossRefGoogle Scholar
  31. Fryer, C.L. 1999, Ap. J., 522, 413ADSCrossRefGoogle Scholar
  32. Fryer, C.L. & Heger, A. 2000, Ap. J., 541, 1033ADSCrossRefGoogle Scholar
  33. Fryer, C.L. & Warren, M.S. 2002, Ap. J. (Letters), 574, L65ADSCrossRefGoogle Scholar
  34. Fryxell, B.A., Müller, E., & Arnett, W.D. 1989, (Preprint MPA-449, Garching: Max-Planck-Institut für Astrophysik)Google Scholar
  35. Gotthelf, E.V., Koralesky, B., Rudnick, L., Jones, T.W., Hwang, U., & Petre, R. 2001, Ap. J. (Letters), 552, L39ADSCrossRefGoogle Scholar
  36. Hamuy, M. 2002, Ap. J., in press (astro-ph/0209174)Google Scholar
  37. Hannestad, S. & Raffelt, G. 1998, Ap. J., 507, 339ADSCrossRefGoogle Scholar
  38. Heger, A., Woosley, S.E., Fryer, C.L., & Langer, N. 2002, in: From Twilight to Highlight The Physics of Supernovae, ed. W. Hillebrandt & B. Leibundgut (Springer Series “ESO Astrophysics Symposia”, Berlin: Springer) (astro-ph/0211062)Google Scholar
  39. Einfeldt, B. 1988, SIAM Jour. Numer. Anal., 25, 294MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. Herant, M. 1995, Physics Rep., 256, 117ADSCrossRefGoogle Scholar
  41. Herant, M., Benz, W., & Colgate, S.A. 1992, Ap. J., 395, 642ADSCrossRefGoogle Scholar
  42. Herant, M., Benz, W., Hix, W.R., Fryer, C.L., & Colgate, S.A. 1994, Ap. J., 435, 339ADSCrossRefGoogle Scholar
  43. Hillebrandt, W., Wolff, R.G., & Nomoto, K. 1984, Astr. Ap., 133, 175ADSGoogle Scholar
  44. Höflich, P., Wheeler, J.C., & Wang, L. 1999, Ap. J., 521, 179ADSCrossRefGoogle Scholar
  45. Hoffman, R.D., Woosley, S.E., Fuller, G.M., & Meyer, B.S. 1996, Ap. J., 460, 478ADSCrossRefGoogle Scholar
  46. Horowitz, C.J. 2002, Phys. Rev. D, 65, 043001–1ADSCrossRefGoogle Scholar
  47. Iwamoto, K., et al. 1998, Nature, 395, 672ADSCrossRefGoogle Scholar
  48. Janka, H.-Th. 2001, Astr. Ap., 368, 527ADSCrossRefGoogle Scholar
  49. Janka, H.-Th. & Müller, E. 1995, Ap. J. (Letters), 448, L109ADSCrossRefGoogle Scholar
  50. Janka, H.-Th. & Müller, E. 1996, Astr. Ap., 306, 167ADSGoogle Scholar
  51. Janka, H.-Th., Buras, R., & Rampp, M. 2002, in Proceedings of the 7th Int. Symposium on Nuclei in the Cosmos, Nuclear Physics A, in pressGoogle Scholar
  52. Keil, W. 1997, PhD Thesis, Technische Universität MünchenGoogle Scholar
  53. Keil, W., Janka, H.-Th., & Müller, E. 1996, Ap. J. (Letters), 473, L111ADSCrossRefGoogle Scholar
  54. Kifonidis, K. 2002, PhD Thesis, Technische Universität MünchenGoogle Scholar
  55. LeBlanc, J.M. & Wilson, J.R. 1970, Ap. J., 161, 541ADSCrossRefGoogle Scholar
  56. Khokhlov, A.M., Höflich, P., Oran, E.S., Wheeler, J.C., Wang, L., & Chtchelkanova, A.Yu. 1999, Ap. J. (Letters), 524, L107ADSCrossRefGoogle Scholar
  57. Lai, D. 2001, in Physics of Neutron Star Interiors, ed. D. Blaschke, N.K. Glendenning, & A.D. Sedrakian, (Lecture Notes in Physics, 578, Berlin: Springer) 424CrossRefGoogle Scholar
  58. Lai, D., Chernoff, D.F., & Cordes, J.M. 2001, Ap. J., 549, 1111ADSCrossRefGoogle Scholar
  59. Lattimer, J.M. & Swesty, F.D. 1991, Nucl. Phys. A, 535, 331ADSCrossRefGoogle Scholar
  60. Leonhard, D.C., Filippenko, A.V., Ardila, D.R., & Brotherton, M.S. 2001, Ap. J., 553, 86ADSGoogle Scholar
  61. Liebendörfer, M., Messer, O.E.B., Mezzacappa, A., Hix, W.R., Thielemann, F.K., & Langanke, K. 2002, in Proc. 11th Workshop on Nuclear Astrophysics, ed. W. Hillebrandt & E. Müller (Report MPA/P13, Garching: Max-PlanckInstitut für Astrophysik) 126 (astro-ph/0203260)Google Scholar
  62. Liebendörfer, M., Mezzacappa, A., Thielemann, F., Messer, O.E.B., Hix, W.R., & Bruenn, S.W. 2001, Phys. Rev. D., 63, 3004Google Scholar
  63. Lyne, A.G., & Lorimer, D.R. 1994, Nature, 369, 127ADSCrossRefGoogle Scholar
  64. MacFadyen, A.I. & Woosley, S.E. 1999, Ap. J., 524, 262ADSCrossRefGoogle Scholar
  65. MacFadyen, A.I., Woosley, S.E., & Heger, A. 2001, Ap. J., 550, 410ADSCrossRefGoogle Scholar
  66. Matzner, C.D. 2002, MNRAS, submitted (astro-ph/0203085)Google Scholar
  67. Mayle, R.W., Tavani, M., & Wilson, J.R. 1993, Ap. J., 418, 398ADSCrossRefGoogle Scholar
  68. Meier, D.L., Koide, S., & Uchida, Y. 2001, Science, 291, 84ADSCrossRefGoogle Scholar
  69. Meier, D.L., Epstein, R.I., Arnett, W.D., & Schramm, D.N. 1976, Ap. J., 204, 869ADSCrossRefGoogle Scholar
  70. Mezzacappa, A., et al. 2002, in: From Twilight to Highlight The Physics of Supernovae, ed. W. Hillebrandt & B. Leibundgut (Springer Series “ESO Astrophysics Symposia”, Berlin: Springer)Google Scholar
  71. Mezzacappa, A. & Bruenn, S.W. 1993, Ap. J., 405, 637ADSCrossRefGoogle Scholar
  72. Mezzacappa, A. & Bruenn, S.W. 1993, Ap. J., 410, 740ADSCrossRefGoogle Scholar
  73. Mezzacappa, A., Liebendörfer, M., Messer, O.E.B., Hix, W.R., Thielemann, F.-K., & Burenn, S.W. 2001, Phys. Rev. Lett., 86, 1935ADSCrossRefGoogle Scholar
  74. Mezzacappa, A., Calder, A.C., Bruenn, S.W., Blondin, J.M., Guidry, M.W., Strayer, M.R., & Umar, A.S. 1998, Ap. J., 495, 911ADSCrossRefGoogle Scholar
  75. Mönchmeyer, R. 1993, PhD Thesis, Technische Universität MünchenGoogle Scholar
  76. Müller, E. & Hillebrandt, W. 1979, Astr. Ap., 80, 147ADSGoogle Scholar
  77. Myra, E.S. & Bludman, S.A. 1989, Ap. J., 340, 384ADSCrossRefGoogle Scholar
  78. Myra, E.S., Bludman, S.A., Hoffman, Y., Lichenstadt, I., Sack, N., & van Riper, K.A. 1987, Ap. J., 318, 744ADSCrossRefGoogle Scholar
  79. Nadyozhin, D.K. 2002, Astr. Ap., submitted (Preprint MPA 1458, Garching: Max-Planck-Institut fur Astrophysik)Google Scholar
  80. Nomoto, K., Shigeyama, T., Kumagai, S., Yamaoka, H., Suzuki, T. 1994, in Supernovae, Les Houches Session LIV, ed. S.A. Bludman, R. Mochkovitch, & J. Zinn-Justin (Amsterdam: Elsevier/North-Holland) 489Google Scholar
  81. Nomoto, K., Maeda, K., Umeda, H., Ohkubo, T., Deng, J., & Mazzali, P. 2002, in A Massive Star Odyssey, from Main Sequence to Supernova, Proc. IAU Symposium 212, ed. K.A. van der Hucht, A. Herrero, & C. Esteban (San Francisco: ASP) in press (astro-ph/0209064)Google Scholar
  82. Ostriker, J.P. & Gunn, J.E. 1971, Ap. J. (Letters), 164, L95ADSCrossRefGoogle Scholar
  83. Shapiro, S.L. & Teukolsky, S.A. 1983, Black Holes, White Dwarfs, and Neutron Stars. (New York: Wiley)CrossRefGoogle Scholar
  84. Plewa, T. & Müller, E. 1999, Astr. Ap., 342, 179ADSGoogle Scholar
  85. Plewa, T. & Müller, E. 2001, Computer Physics Communications, 138, 101ADSzbMATHCrossRefGoogle Scholar
  86. Popham, R., Woosley, S.E., & Fryer, C.L. 1999, Ap. J., 518, 356ADSCrossRefGoogle Scholar
  87. Quirk, J.J. 1994, Int. J. Num. Meth. Fluids, 18, 555MathSciNetzbMATHCrossRefGoogle Scholar
  88. Rampp, M. & Janka, H.-Th. 2000, Ap. J. (Letters), 539, L33ADSCrossRefGoogle Scholar
  89. Rampp, M. & Janka, H.-Th. 2002, Astr. Ap., 396, 361ADSCrossRefGoogle Scholar
  90. Shimizu, T., Yamada, S., & Sato, K. 1993, Publ. Astron. Soc. Japan, 45, L53ADSGoogle Scholar
  91. Shimizu, T., Yamada, S., & Sato, K. 1994, Ap. J. (Letters), 432, L119ADSCrossRefGoogle Scholar
  92. Shimizu, T.M., Ebisuzaki, T., Sato, K., & Yamada, S. 2001, Ap. J., 552, 756ADSCrossRefGoogle Scholar
  93. Stairs, I.H., Thorsett, S.E., Taylor, J.H., & Wolszczan, A. 2002, Ap. J., in press (astro-ph/0208357)Google Scholar
  94. Sumiyoshi, K., Terasawa, M., Mathews, G.J., Kajino, T., Yamada, S., & Suzuki, H. 2001, Ap. J., 562, 880ADSCrossRefGoogle Scholar
  95. Swesty, F.D., Lattimer, J.M., & Myra, E.S. 1994, Ap. J., 425, 195ADSCrossRefGoogle Scholar
  96. Thompson, C. & Duncan, R.C. 1993, Ap. J., 408, 194ADSCrossRefGoogle Scholar
  97. Thompson, C. & Murray, N. 2001, Ap. J., 560, 339ADSCrossRefGoogle Scholar
  98. Thompson, T.A., Burrows, A., & Pinto, P.A. 2002, Ap. J., submitted (astro-ph/0211194)Google Scholar
  99. Thorsett, S.E. & Chakrabarty, D. 1999, Ap. J., 512, 288ADSCrossRefGoogle Scholar
  100. Thorstensen, J.R., Fesen, R.A., & van den Bergh, S. 2001, Ap. J., 122, 297ADSGoogle Scholar
  101. Totani, T., Sato, K., Dalhed, H.E., & Wilson, J.R. 1998, Ap. J., 496, 216ADSCrossRefGoogle Scholar
  102. Wang, L., Howell, D.A., Höflich, P., & Wheller, J.C. 2001, Ap. J., 550, 1030ADSCrossRefGoogle Scholar
  103. Wang, L., Wheeler, J.C., Höflich, P., Khokhlov, A., et al. 2002, Ap. J., in press (astro-ph/0205337)Google Scholar
  104. Wheeler, J.C. 2002, AAPT/AJP Resource Letter, American J. of Physics, in press (astro-ph/0209514)Google Scholar
  105. Wheeler, J.C., Meier, D.L., & Wilson, J.R. 2002, Ap. J., 568, 807ADSCrossRefGoogle Scholar
  106. Wheeler, J.C., Yi, I., Höflich, P., & Wang, L. 2000, Ap. J., 537, 810ADSCrossRefGoogle Scholar
  107. Wilson, J.R. 1985, in Numerical Astrophysics, ed. J.M. Centrella, J.M. LeBlanc, R.L. Bowers, & J.A. Wheeler (Boston: Jones and Bartlett) 422Google Scholar
  108. Wilson, J.R. & Mayle, R. 1988, Phys. Rep., 163, 63ADSCrossRefGoogle Scholar
  109. Wilson, J.R. & Mayle, R. 1993, Phys. Rep., 227, 97ADSCrossRefGoogle Scholar
  110. Woosley, S.E. 1993, Ap. J., 405, 273ADSCrossRefGoogle Scholar
  111. Woosley, S.E., Heger, A., & Weaver, T.A. 2002, Reviews of Modern Physics, in pressGoogle Scholar
  112. Woosley, S.E., Zhang, W., & Heger, A. 2002, in: From Twilight to Highlight The Physics of Supernovae, ed. W. Hillebrandt & B. Leibundgut (Springer Series “ESO Astrophysics Symposia”, Berlin: Springer) (astro-ph/0211063)Google Scholar
  113. Zhang, W., Woosley, S.E., & MacFadyen, A.I. 2002, Ap. J., submitted (astro-ph/0207436)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • H.-Thomas Janka
    • 1
  • Robert Buras
    • 1
  • Konstantinos Kifonidis
    • 1
  • Markus Rampp
    • 1
  • Tomek Plewa
    • 2
    • 3
  1. 1.Max-Planck-Institut für AstrophysikGarchingGermany
  2. 2.Dept. of Astron. and Astrophysics and Center for Astrophysical Thermonuclear FlashesThe University of ChicagoChicagoUSA
  3. 3.Nicolaus Copernicus Astronomical CenterWarsawPoland

Personalised recommendations