Review on the Observed and Physical Properties of core Collapse Supernovae

  • Mario Hamuy
Part of the Astrophysics and Space Science Library book series (ASSL, volume 302)


Core-collapse supernovae prove to comprise the most common general class of exploding star in the Universe and they come in a great variety of flavors. The wide range of luminosities, expansion velocities, and chemical abundances displayed by these objects is evidence for large variations in explosion energy and in the properties of their progenitors. This paper summarizes observed and physical properties of all types of core collapse supernovae. Despite the great diversity displayed by these objects, several regularities emerge which suggest that 1) there is a continuum in the properties of these objects, 2) the mass of the envelope is one of the driving parameters of the explosion, or it is correlated with some other property of the core, with the latter determining the outcome of the explosion, and 3) the physics of the core and explosion mechanism of all core collapse supernovae are not be fundamentally different, regardless of the external appearance of the supernova. Far above in energy scale and 56Ni production lies SN 1998bw, the only supernova firmly associated with a gamma-ray burst.


supernovae nucleosynthesis abundances 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnett, D. (1996), Supernovae and Nucleosynthesis, an investigation of the history of matter, from the Big Bang to the present, (New Jersey: Princeton Univ. Press)Google Scholar
  2. Baade, W. (1938), ApJ, 88, 285ADSCrossRefGoogle Scholar
  3. Balinskaya, I. S., Bychkov, K. V., & Neizvestny, S. I. (1980), A&A, 85, L19ADSGoogle Scholar
  4. Barbon, R., Ciatti, F., & Rosino, L. (1979), A&A, 72, 287ADSGoogle Scholar
  5. Barbon, R., Ciatti, F., & Rosino, L. (1982a), A&A, 116, 35ADSGoogle Scholar
  6. Barbon, R., Ciatti, F., Rosino, L., Ortolani, S., & Rafanelli, P. (1982b), A&A, 116, 43ADSGoogle Scholar
  7. Benetti, S., Cappellaro, E., & Turatto, M. (1991), A&A, 247, 410ADSGoogle Scholar
  8. Benetti, S., Cappellaro, E., Turatto, M., Della Valle, M., Mazzali, P. A., & Gouiffes, C. (1994), A&A, 285, 147ADSGoogle Scholar
  9. Benetti, S., Cappellaro, E., Danziger, I. J., Turatto, M., Patat, F., & Della Valle, M. (1998), MNRAS, 294, 448ADSCrossRefGoogle Scholar
  10. Benetti, S., Turatto, M., Cappellaro, E., Danziger, I. J., & Mazzali, P. A. (1999), MNRAS, 305 811ADSCrossRefGoogle Scholar
  11. Bertola, F. (1964), Ann. Ap. 27, 319ADSGoogle Scholar
  12. Blanton, E. L., Schmidt, B. P., Kirshner, R. P., Ford, C. H., Chromey, F. R., & Herbst, W. (1995), AJ, 110, 2868ADSCrossRefGoogle Scholar
  13. Blinnikov, S. I., & Bartunov, O. S. (1993), A&A, 273, 106ADSGoogle Scholar
  14. Blinnikov, S., Lundqvist, P., Bartunov, O., Nomoto, K., & Iwamoto, K. (2000), ApJ, 532, 1132ADSCrossRefGoogle Scholar
  15. Branch, D., Falk, S. W., Marshall, L. M., Rybski, P., Uomoto, A. K., & Wills, B. J. (1981), ApJ, 244, 780ADSCrossRefGoogle Scholar
  16. Branch, D. et al. (2002), ApJ, 566, 1005ADSCrossRefGoogle Scholar
  17. Branch, D. (2002), in Proceedings of “A Massive Star Odyssey, from Main Sequence to Supernova” IAU Symposium No. 212, eds. K. A. van der Hucht, A. Herrero, & C. Esteban, in press (astro-ph/0207197)Google Scholar
  18. Burrows, A. (2000), Nature, 403, 727ADSCrossRefGoogle Scholar
  19. Cappellaro, E., Evans, R., & Turatto, M. (1999), A&A, 351, 459ADSGoogle Scholar
  20. Cardall, C. Y. (2003), to Proceedings of the “4th International Workshop on the Identification of Dark Matter”, (World Scientific), in press (astro-ph/0212438)Google Scholar
  21. Chevalier, R. A. (1998), ApJ, 499, 810ADSCrossRefGoogle Scholar
  22. Chugai, N. N., & Danziger, I. J. (1994), MNRAS, 268, 173ADSGoogle Scholar
  23. Chugai, N. N. (1997a), ARep, 41, 672ADSGoogle Scholar
  24. Chugai, N. N. (1997b), Ap&SS, 252, 225ADSCrossRefGoogle Scholar
  25. Ciatti, F., Rosino, L., & Bertola, F. (1971), MmSAI, 42, 163ADSGoogle Scholar
  26. Ciatti, F., & Rosino, L. (1977), A&A, 56, 59ADSGoogle Scholar
  27. Clocchiatti, A., et al. (1996a), AJ, 111, 1286ADSCrossRefGoogle Scholar
  28. Clocchiatti, A., Wheeler, J. C., Brotherton, M. S., Cochran, A. L., Wills, D., Barker, E. S., & Turatto, M. (1996b), ApJ, 462, 462ADSCrossRefGoogle Scholar
  29. Clocchiatti, A., et al. (2001), ApJ, 553, 886ADSCrossRefGoogle Scholar
  30. De Vaucouleurs, G., De Vaucouleurs, A., Buta, R., Ables, H. D., & Hewitt, A. V. (1981), PASP, 93, 36ADSCrossRefGoogle Scholar
  31. Elias, J. H., Matthews, K., Neugebauer, G., & Persson, S. E. (1985), ApJ, 296, 379ADSCrossRefGoogle Scholar
  32. Filippenko, A. V., Porter, A. C., & Sargent, W. L. W. (1990), AJ, 100, 1575ADSCrossRefGoogle Scholar
  33. Filippenko, A. V., Matheson, T., & Ho, L. C. (1993), ApJ, 415, L103ADSCrossRefGoogle Scholar
  34. Filippenko, A. V. et al. (1995), ApJ, 450, L11ADSCrossRefGoogle Scholar
  35. Filippenko, A. V. (1997), ARA&A, 35, 309ADSCrossRefGoogle Scholar
  36. Galama, T. J., et al. (1998), Nature, 395, 670ADSCrossRefGoogle Scholar
  37. Gal-Yam, A., Ofek, E. O., & Shemmer, O. (2002), MNRAS, 332, L73ADSCrossRefGoogle Scholar
  38. Garnavich, P., Jha, S., Kirshner, R., Challis, P., Balam, D., Brown, W., & Briceno, C. (1997a), IAUC 6786Google Scholar
  39. Garnavich, P., Jha, S., Kirshner, R., Challis, P., Balam, D., Berlind, P., Thorstensen, J., & Macri, L. (1997b), IAUC 6798Google Scholar
  40. Germany, L. M., Reiss, D. J., Sadler, E. M., Schmidt, B. P., & Stubbs, C. W. (2000), ApJ, 533, 320ADSCrossRefGoogle Scholar
  41. Hamuy, M., & Suntzeff, N. B. (1990), AJ, 99, 1146ADSCrossRefGoogle Scholar
  42. Hamuy, M., et al. (2001), ApJ, 558, 615ADSCrossRefGoogle Scholar
  43. Hamuy, M. (2001), Ph.D Thesis, The University of ArizonaGoogle Scholar
  44. Hamuy, M. et al. (2002), AJ, 124, 417ADSCrossRefGoogle Scholar
  45. Hamuy, M. (2003), ApJ, 582, in press (astro-ph/0209174)Google Scholar
  46. Harkness, R. P. et al. (1987), ApJ, 317, 355ADSCrossRefGoogle Scholar
  47. Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. (2003), ApJ, submitted (astro-ph/0212469)Google Scholar
  48. Höflich, P., Wheeler, J. C., & Wang, L. (1999), ApJ, 521, 179ADSCrossRefGoogle Scholar
  49. Janka, H.-T., Buras, R., Kifonidis, K., Rampp, M., & Plewa, T., (2003), this volume (astro-ph/0212314)Google Scholar
  50. Jeffery, D. J., & Branch, D. (1990), in Jerusalem Winter School for Theoretical Physics: Supernovae, Vol. 6, ed. J. C. Wheeler, T. Piran, & S. Weinberg (Singapore: World Scientific), 149Google Scholar
  51. Kirshner, R. P., & Kwan, J. (1974), ApJ, 193, 27ADSCrossRefGoogle Scholar
  52. Leonard, D. C., Filippenko, A. V., Barth, A. J., & Matheson, T. (2000), ApJ, 536, 239ADSCrossRefGoogle Scholar
  53. Leonard, D. C., et al. (2002a), PASP, 114, 35MathSciNetADSCrossRefGoogle Scholar
  54. Leonard, D. C., et al. (2002b), AJ, 124, 2490ADSCrossRefGoogle Scholar
  55. Leonard, D. C., Filippenko, A. V., Chorrock, R., & Foley, R. J. (2002c), PASP, 114, 1333ADSCrossRefGoogle Scholar
  56. Leonard, D. C. (2003), private communicationGoogle Scholar
  57. Li, W. D. et al. (2000), in Cosmic Explosions, ed. S. S. Holt & W. W. Zhang (New York: AIP), 103Google Scholar
  58. Litvinova, I. Y., & Nadezhin, D. K. (1985), SvAL, 11, 145ADSGoogle Scholar
  59. MacFadyen, A. I., Woosley, S. E., & Heger, A. (2001), ApJ, 550, 410ADSCrossRefGoogle Scholar
  60. Matheson, T., Filippenko, A. V., Chornock, R., Leonard, D. C., & Li, W. (2000), AJ, 119, 2303ADSCrossRefGoogle Scholar
  61. Matheson, T., Filippenko, A. V., Li, W., Leonard, D. C., & Schields, J. C. (2001), AJ, 121, 1648ADSCrossRefGoogle Scholar
  62. Mazzali, P. A., et al. (2002), ApJ, 572, L61ADSCrossRefGoogle Scholar
  63. McKenzie, E. H., & Schaefer, B. E. (1999), PASP, 111, 964ADSCrossRefGoogle Scholar
  64. Minkowski, R. (1941), PASP, 53, 224ADSCrossRefGoogle Scholar
  65. Nomoto, K. et al. (2000), in Gamma-ray Bursts, 5th Huntsville Symposium, AIP Conf. Ser., Vol 526, ed. R. Marc Kippen, R. S. Mallozzi, & G. J. Fishman (New York: Melville), 622Google Scholar
  66. Patat, F., et al. (2001), ApJ, 555, 900ADSCrossRefGoogle Scholar
  67. Phillips, M. M., Heathcote, S. R., Hamuy, M., & Navarrete, M. (1988), AJ, 95, 1087ADSCrossRefGoogle Scholar
  68. Phillips, M. M., & Kirhakos, S. (2003), private communicationGoogle Scholar
  69. Richmond, M. W., et al. (1996), AJ, 111, 327ADSCrossRefGoogle Scholar
  70. Ruiz-Lapuente, P., Kidger, M., Lopez, R., & Canal, R. (1990), AJ, 100, 782ADSCrossRefGoogle Scholar
  71. Schlegel, E. M. (1990), MNRAS, 244, 269ADSGoogle Scholar
  72. Schmidt, B. P., et al. (1993), AJ, 105, 2236ADSCrossRefGoogle Scholar
  73. Schmidt, B. P. (2003), private communicationGoogle Scholar
  74. Shigeyama, T., Nomoto, K., Tsujimoto, T., & Hashimoto, M. (1990), ApJ, 361, L23ADSCrossRefGoogle Scholar
  75. Smartt, S. J., Gilmore, G. F., Trentham, N., Tout, C. A., & Frayn, C. M. (2001), ApJ, 556, L29ADSCrossRefGoogle Scholar
  76. Smartt, S. J., Gilmore, G. F., Tout, C. A., & Hodgkin, S. T. (2002), ApJ, 565, 1089ADSCrossRefGoogle Scholar
  77. Sollerman, J., Kozma, C., Fransson, C., Leibundgut, B., Lundqvist, P., Ryde, F., & Woudt, P. (2000), ApJ, 537, L127ADSCrossRefGoogle Scholar
  78. Stritzinger et al. (2002), AJ, 124, 2100ADSCrossRefGoogle Scholar
  79. Suntzeff, N. B., et al. (2003), private communicationGoogle Scholar
  80. Tsvetkov, D. Y. (1994), AstL, 20, 374ADSGoogle Scholar
  81. Turatto, M., Cappellaro, E., Danziger, I. J., Benetti, S., Gouiffes, C., & Della Valle, M. (1993a), MNRAS, 262, 128ADSGoogle Scholar
  82. Turatto, M., Cappellaro, E., Benetti, S., & Danziger, I. J. (1993b), MNRAS, 265, 471ADSGoogle Scholar
  83. Turatto, M., et al. (2000), ApJ, 534, L57ADSCrossRefGoogle Scholar
  84. van Belle, G.T., et al. (1999), AJ, 117, 521ADSCrossRefGoogle Scholar
  85. Wang, L., Howell, D. A., Höflich, P., & Wheeler, J. C. (2001), ApJ, 550, 1030ADSCrossRefGoogle Scholar
  86. Weiler, K. W., Panagia, N., Montes, M. J., Sramek, R. A., & Van Dyk, S. D., (2002), ARA&A, 40, 387ADSCrossRefGoogle Scholar
  87. Wheeler, J. C., & Harkness, R. P. (1986), in Galaxy distances and deviations from universal expansion, ed. B. F. Madore & R. B. Tully (Dordrecht, Reidel), 45CrossRefGoogle Scholar
  88. Woodings, S. J., Williams, A. J., Martin, R., Burman, R. R., & Blair, D. G. (1998), MNRAS, 301, L5ADSCrossRefGoogle Scholar
  89. Woosley, S. E., Pinto, P. A., Martin, P. G., & Weaver, T. A. (1987), ApJ, 318, 664ADSCrossRefGoogle Scholar
  90. Zampieri, L., Pastorello, A., Turatto, M., Cappellaro, E., Benetti, S., Altavilla, G., Mazzali, P., & Hamuy, M. (2003), MNRAS, in press, (astro-ph/021017)Google Scholar
  91. Zwicky, F. (1938), PASP, 50, 215ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Mario Hamuy
    • 1
  1. 1.Carnegie ObservatoriesUSA

Personalised recommendations