Advertisement

The Collapsar Engine for GRBS and Hypernovae

  • Weiqun Zhang
  • Chris L. Fryer
Part of the Astrophysics and Space Science Library book series (ASSL, volume 302)

Abstract

For most collapsing stars, neutrinos from the proto-neutron star are able to drive a strong supernova explosion with a neutron star remnant. But very massive stars (>20M ) will ultimately form black holes. These stars have the potential to drive enormous explosions by tapping the energy in a black hole accretion disk. The engine behind this black hole accretion disk explosion has been termed “collapsar”. In this chapter, we review the collapsar mechanism for gammaray bursts, hypernovae, and X-ray flashes from progenitor formation through jet propogation.

Keywords

Black Hole Accretion Disk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloy, M. A., Ibáñez, J. Ma., Martí, J. Ma., & Müller, E. 1999, ApJS, 122, 151ADSCrossRefGoogle Scholar
  2. Aloy, M. A., Müller, E., Ibánez, J. Ma., Martí, J. Mg., & MacFadyen, A. I. 2000, ApJ, 531, L119ADSCrossRefGoogle Scholar
  3. Aloy, M. A., Martí, J. Ma., Gómez, J.L., Agudo, I., Müller, E., & Ibáñez, J. Ma. 2003, ApJ, 585, L109ADSCrossRefGoogle Scholar
  4. Anile, A.M. 1989, Relativistic Fluids and Magneto-Fluids (Cambridge: Cambridge Univ. Press)zbMATHGoogle Scholar
  5. Begelman, M.C., Blandford, R.D., & Rees, M.J. 1984, Reviews of Modern Physics, 56, 255ADSCrossRefGoogle Scholar
  6. Blandford, R.D. ,& Rees, M.J. 1974, MNRAS, 169, 395ADSGoogle Scholar
  7. Blandford, R.D. ,& Znajek, R.L. 1977, MNRAS, 179, 433ADSGoogle Scholar
  8. Clarke, D.A., Norman, M.L., & Burns, J.O. 1986, ApJ, 311, L63ADSCrossRefGoogle Scholar
  9. Coburn, W., & Boggs, S.E. 2003, Nature, 423, 415ADSCrossRefGoogle Scholar
  10. Colella, P., & Woodward, P.R. 1984, J. Comput. Phys, 54, 174MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. Cowley, A.P., et al. 1998, ApJ, 504, 854ADSCrossRefGoogle Scholar
  12. Duncan, G.C., & Hugnes, P.A. 1994, ApJ, 436, L119ADSCrossRefGoogle Scholar
  13. Ferrari, A. 1998, Annu. Rev. Astron. Astrophys., 36, 539ADSCrossRefGoogle Scholar
  14. Frail, D., et al. 2001, ApJ, L55Google Scholar
  15. Fryer, C. L., & Woosley, S.E. 1998, ApJ, 502, L9ADSCrossRefGoogle Scholar
  16. Fryer, C. L. 1999, ApJ, 522, 413ADSCrossRefGoogle Scholar
  17. Fryer, C. L., Woosley, S. E., & Hartmann, D.H. 1999, ApJ, 526, 152ADSCrossRefGoogle Scholar
  18. Fryer, C. L., & Kalogera, V. 2001, ApJ, 554, 548ADSCrossRefGoogle Scholar
  19. Fryer, C. L., & Meszaros, P. 2003, ApJ, 588, L25ADSCrossRefGoogle Scholar
  20. Heger, A., Woosley, S.E., & Spruit, H. in preparation for ApJGoogle Scholar
  21. Heise, J., in’t Zand, J., Kippen, R. M., Woods, P. M. 2001, GRBs in the Afterglow Era, eds. Costa, Frontera, & Hjorh, ESO Astrophysics Symposia, (Springer), 16CrossRefGoogle Scholar
  22. Garnavich, P. et al. 2003, ApJ, 582, 924ADSCrossRefGoogle Scholar
  23. Hogg, D. W., & Fruchter, A. S. 1999, ApJ, 520, 54ADSCrossRefGoogle Scholar
  24. Holland, S. T., & Hjorth, J. 1999, A&A, 344, L67ADSGoogle Scholar
  25. Hughes, P.A., Miller, M.A., & Duncan, G.C. 2002, ApJ, 572, 713ADSCrossRefGoogle Scholar
  26. Khokhlov, A. M., Höflich, P. A., Oran, E. S., Wheeler, J. C., Wang, L., & Chtchelkanova, A. Yu. 1999, ApJ, 524, L107ADSCrossRefGoogle Scholar
  27. Kippen, R. M., Woods, P. M, Heise, J., in ‘t Zand, J. J. M., Briggs, M. S., & Preece, R. D. 2001, in proceedings of the Woods Hole GRB Workshop, ed. G.R. Ricker & R.K. Van der Speck, 244Google Scholar
  28. Koide, S., Nishikawa, K.-I., Mutel, R.L. 1996, ApJ, 463, L71ADSCrossRefGoogle Scholar
  29. Komissarov, S.S., & Falle, S.A.E.G. 1998, MNRAS, 297, 1087ADSCrossRefGoogle Scholar
  30. Lai, D. 2003, ApJ, submitted, astro-ph/0306012Google Scholar
  31. Li, Z.-Y., & Chevalier, R. A. 2001, ApJ, 551, 940ADSCrossRefGoogle Scholar
  32. Lyutikov, M., Pariev, V.I., & Blandford, R. 2003, ApJ, submitted, astro-ph/0305410Google Scholar
  33. MacFadyen, A. I., & Woosley, S. E. 1999, ApJ, 524, 262ADSCrossRefGoogle Scholar
  34. MacFadyen, A. I., Woosley, S. E., & Heger, A. 2001, ApJ, 550, 410ADSCrossRefGoogle Scholar
  35. Martí, J. Ma., Müller, E. 1999, Living Reviews in Relativity, Vol. 2, http://www.livingreviews.org/Articles/Volume2/1999–3MartíGoogle Scholar
  36. Martí, J. Ma, Müller, E., & Ibáñez, J. Ma. 1994, A&A, 282, L9ADSGoogle Scholar
  37. Martí, J. Ma., Müller, E., Font, J. A., Ibáñez, J. Ma., & Marquina, A. 1997, ApJ, 479, 151ADSCrossRefGoogle Scholar
  38. Meszaros P., & Rees, M.J. 2001, ApJ, 556, L37ADSCrossRefGoogle Scholar
  39. Müller, E. 1998, in Saas-Fee Advanced Couse 27, Computational Methods for Astrophysical Fluid Flow, LeVeque, R.J., Mihalas, D., Dorfi, E.A., & Müller, E.Google Scholar
  40. Narayan, R, Piran, T., Kumar, P. 2001, ApJ, 557, 949ADSCrossRefGoogle Scholar
  41. Nishikawa, K., Koide, S., Sakai, J., Christodoulou, D.M., Sol, H. & Mutel, R.L., 1997, ApJ, 483, L45ADSCrossRefGoogle Scholar
  42. Nishikawa, K., Koide, S., Sakai, J., Christodoulou, D.M., Sol, H. & Mutel, R.L., 1998, ApJ, 498, 166ADSCrossRefGoogle Scholar
  43. Norman, M.L., Smarr, L., Winkler, K.-H.A., & Smith, M.D. 1982, A&A, 113, 285ADSGoogle Scholar
  44. Ogilvie, G.I., & Dubus, G. 2001, MNRAS, 320, 485ADSCrossRefGoogle Scholar
  45. Popham, R., Woosley, S. E., & Fryer, C. 1999, ApJ, 518, 356ADSCrossRefGoogle Scholar
  46. Pringle, J.E. 1996, MNRAS, 281, 857ADSGoogle Scholar
  47. Ramirez-Ruiz, E., Celotti, A., & Rees, M.J. 2002, MNRAS, 337, 1349ADSCrossRefGoogle Scholar
  48. Rees, M.J. 1971, Nature, 229, 312ADSCrossRefGoogle Scholar
  49. Rhoads, J.E. 1997, ApJ, 487, L 1Google Scholar
  50. Rossi, E., Lazzati, D., & Rees, M.J. 2002, MNRAS, 332, 945ADSCrossRefGoogle Scholar
  51. Salmonson, J. 2000, ApJ, 544, L115ADSCrossRefGoogle Scholar
  52. Sari, R., Piran, T., & Halpern, J. 1999, ApJ, 519, L17ADSCrossRefGoogle Scholar
  53. Scheuer, P.A.G. 1974, MNRAS, 166, 513ADSGoogle Scholar
  54. Shu, C.W., & Osher, S.J. 1988, J. Comput. Phys, 77, 439MathSciNetADSzbMATHCrossRefGoogle Scholar
  55. Stanek, K. Z. et al. 2003, astro-ph/0304173Google Scholar
  56. Thiele, M., & Camenzind, M. 2002, A&A, 381, 53ADSCrossRefGoogle Scholar
  57. van Putten, M.H.P.M. 1993, ApJ, 408, L21ADSCrossRefGoogle Scholar
  58. van Putten, M.H.P.M. 1996, ApJ, 467, 157Google Scholar
  59. Waxman, E., & Mészáros, P. 2003, ApJ, 584, 390 submitted, astro-ph/0206392ADSCrossRefGoogle Scholar
  60. Woosley, S.E., & MacFadyen, A. I. 1999, A&AS, 138, 499ADSCrossRefGoogle Scholar
  61. Woosley, S.E. 2000, GRBs, 5th Huntsville Symposium, eds. Kippen, Mallozzi, & Fishman, AIP, Vol 526, 555Google Scholar
  62. Woosley, S.E. 2001, GRBs in the Afterglow Era, eds. Costa, Frontera, & Hjorh, ESO Astrophysics Symposia, (Springer), 555Google Scholar
  63. Woosley, S.E., Zhang, W., & Heger, A. 2002, Gamma-Ray Bursts in the Afterglow Era, the 3rd Rome WorkshopGoogle Scholar
  64. Zhang, B., & Meszaros, P. 2002, ApJ, 571, 876ADSCrossRefGoogle Scholar
  65. Zhang, W. & Fryer, C. L. 2001, ApJ, 550, 357ADSCrossRefGoogle Scholar
  66. Zhang, W., Woosley, S.E, & MacFadyen, A.I. 2003, ApJ, 586, 356ADSCrossRefGoogle Scholar
  67. Zhang, W., Woosley, S.E, & Heger, A. 2003, in preparationGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Weiqun Zhang
    • 1
  • Chris L. Fryer
    • 2
  1. 1.Astronomy DepartmentUC Santa CruzSanta CruzUSA
  2. 2.Theoretical AstrophysicsLos Alamos National LaboratoriesLos AlamosUSA

Personalised recommendations