Advertisement

Hypernovae and Other Black-Hole-Forming Supernovae

  • Ken’ichi Nomoto
  • Keiichi Maeda
  • Paolo A. Mazzali
  • Hideyuki Umeda
  • Jinsong Deng
  • Koichi Iwamoto
Part of the Astrophysics and Space Science Library book series (ASSL, volume 302)

Abstract

During the last few years, a number of exceptional core-collapse supernovae (SNe) have been discovered. Although their properties are rather diverse, they have the common feature that at least some of their basic parameters (kinetic energy of the explosion, mass of the ejecta, mass of the synthesized 56Ni), and sometimes all of them, are larger, sometimes by more than an order of magnitude, than the values typically found for this type of SNe. Therefore, these SNe have been given the collective classification of ‘Hypernovae’ . The best known object in this class is SN 1998bw, which owes its fame to its likely association with the gamma-ray burst GRB 980425. In this paper, we first describe how the basic parameters of SN 1998bw can be derived from observations and modeling, and discuss the properties of other hypernovae individually. These hypernovae seem to come from rather massive stars, being more massive than ~ 20 – 25 M on the main-sequence, thus forming black holes. On the other hand, there are some examples of massive SNe with only a small kinetic energy. We suggest that stars with non-rotating black holes are likely to collapse “quietly” ejecting a small amount of heavy elements (Faint supernovae). In contrast, stars with rotating black holes are likely to give rise to very energetic supernovae (Hypernovae). We present distinct nucleosynthesis features of these two types of “black-holeforming” supernovae. Nucleosynthesis in Hypernovae are characterized by larger abundance ratios (Zn,Co,V,Ti)/Fe and smaller (Mn,Cr)/Fe. Nucleosynthesis in Faint supernovae is characterized by a large amount of fall-back. We show that the abundance pattern of the recently discovered most Fe deficient star, HE0107 – 5240, and other extremely metal-poor carbon-rich stars are in good accord with those of black-hole-forming supernovae, but not pair-instability supernovae. This suggests that black-hole-forming supernovae made important contributions to the early Galactic (and cosmic) chemical evolution. Finally we discuss the nature of First (Pop III) Stars.

Keywords

Supernovae Hypernovae Nucleosynthesis Chemical Evolution Gamma-Ray Bursts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, T., Bryan, G.L., & Norman, M.L. 2002, Science, 295, 93ADSCrossRefGoogle Scholar
  2. Aoki, W., Ryan, S.G., Beers, T.C., & Ando, H. 2002, ApJ, 567, 1166ADSCrossRefGoogle Scholar
  3. Aloy, M.A., Müller, E., Ibáñez, J.M., Martí, J.M., MacFadyen, A. 2000, ApJ, 531, L119ADSCrossRefGoogle Scholar
  4. Arnett, D. 1982, ApJ, 253, 785ADSCrossRefGoogle Scholar
  5. Arnett, D. Bahcall, J.N., Kirshner, R.P., Woosley, S.E. 1989, ARA&A, 27, 629ADSCrossRefGoogle Scholar
  6. Arnett, D. 2001, in Supernovae and Gamma-Ray Bursts (Proceedings of the Space Telescope Science Institute Symposium, Baltimore, USA), eds. M. Livio, N. Panagia, K. Sahu (Cambridge), 250Google Scholar
  7. Audouze, J., & Silk, J. 1995, ApJ, 451, L49ADSCrossRefGoogle Scholar
  8. Axelrod, T.S. 1980, Ph.D. thesis, University of CaliforniaGoogle Scholar
  9. Baraffe, I. Heger, A., & Woosley, S.E. 2001, ApJ, 550, 890ADSCrossRefGoogle Scholar
  10. Baron, E., Young, T.R., Branch, D. 1993, ApJ, 409, 417ADSCrossRefGoogle Scholar
  11. Berger, E, Kulkarni, S.R., Chevalier, R.A. 2002, ApJ, 577, L5ADSCrossRefGoogle Scholar
  12. Blake, L.A.J., Ryan, S.G., Norris, J.E., Beers, T.C. 2001, Nucl. Phys. A. 688, 502CrossRefGoogle Scholar
  13. Blandford, R.D., & Znajek, R.L. 1977, MNRAS, 179, 433ADSGoogle Scholar
  14. Bloom, J.S., et al. 1999, Nature, 401, 453ADSCrossRefGoogle Scholar
  15. Bloom, J. S ., et al. 2002, ApJ, 572, L45ADSCrossRefGoogle Scholar
  16. Boothloyd, A.I., & Sackmann, I.-J. 1999, ApJ, 510, 217ADSCrossRefGoogle Scholar
  17. Branch, D. 2001, in Supernovae and Gamma-Ray Bursts (Proceedings of the Space Telescope Science Institute Symposium, Baltimore, USA), eds. M. Livio, N. Panagia, K. Sahu (Cambridge), 96Google Scholar
  18. Chevalier, R.A. 1989, ApJ, 346, 847ADSCrossRefGoogle Scholar
  19. Christlieb, N., et al. 2002, Nature, 419, 904ADSCrossRefGoogle Scholar
  20. Clocchiatti, A., & Wheeler, J.C. 1997, ApJ, 491, 375ADSCrossRefGoogle Scholar
  21. Colgate, S.A., & Petschek, A.G. 1979, ApJ, 229, 682ADSCrossRefGoogle Scholar
  22. Colgate, S.A., Petschek, A.G., Kriese, J.T. 1980, ApJ, 237, L81ADSCrossRefGoogle Scholar
  23. Deng, J., Hatano, K., Nakamura, T., Maeda, K., Nomoto, K., Nugent, P., Aldering, G., & Branch, D. 2001, in New Century of X-ray Astronomy, ASP Conference Series, 251, eds. H. Inoue, & H. Kunieda (ASP; San Francisco), 238Google Scholar
  24. Depagne, E., et al. 2002, A&A, 390, 187ADSCrossRefGoogle Scholar
  25. Ebisuzaki, T., Shigeyama, T., & Nomoto, K. 1989, ApJ, 344. 65ADSCrossRefGoogle Scholar
  26. Ergma, E., & van den Heuvel, E.P.J. 1998, A&A, 331, L29ADSGoogle Scholar
  27. Filippenko, A.V., & Chornock, R. 2002, IAU Circ., 78, 25ADSGoogle Scholar
  28. Fransson, C., & Kozma, C 1993, ApJ, 408, L25ADSCrossRefGoogle Scholar
  29. Fryer, C.L., & Warren, M.S. 2002, ApJ, 574, L65ADSCrossRefGoogle Scholar
  30. Fynbo, J.U. 2000, ApJ, 542, L89ADSCrossRefGoogle Scholar
  31. Galama, T.J., et al. 1998, Nature, 395, 670ADSCrossRefGoogle Scholar
  32. Galama, T.J., et al. 2000, ApJ, 536, 185ADSCrossRefGoogle Scholar
  33. Gal-Yam, A., Ofek, E.O., & Shemmer, O. 2002, MNRAS, 332, L73ADSCrossRefGoogle Scholar
  34. Garnavich, P., et al. 1997, IAU Circ., 6798Google Scholar
  35. Garnavich, P., et al. 2002, ApJ, 582, 924ADSCrossRefGoogle Scholar
  36. Germany, L.M., Reiss, D.J., Schmidt, B.P., Stubbs, C.W., Sadler, E.M. 2000, ApJ, 533, 320ADSCrossRefGoogle Scholar
  37. Hachisu, I., Matsuda, T., Nomoto, K., Shigeyama, T. 1990, ApJ, 358, L57ADSCrossRefGoogle Scholar
  38. Hachisu, I., Matsuda, T., Nomoto, K., Shigeyama, T. 1991, ApJ, 368, L27ADSCrossRefGoogle Scholar
  39. Hamuy, M. 2003, ApJ, 582, 905ADSCrossRefGoogle Scholar
  40. Hashimoto, M., Nomoto, K., Shigeyama, T. 1989, A&A, 210, L5ADSGoogle Scholar
  41. Hatano, K., Branch, D., Nomoto, K., Deng, J.S., Maeda, K., Nugent, P., Aldering, G. 2001, BAAS, 198, 3902ADSGoogle Scholar
  42. Heger, A., & Woosley, S.E. 2002, ApJ, 567, 532ADSCrossRefGoogle Scholar
  43. Hirose, Y. 2002, IAU Circ., 7810Google Scholar
  44. Ibrahim, A., Boury, A., & Noels, A. 1981, A&A, 103, 390ADSGoogle Scholar
  45. Israelian, G., et al. 1999, Nature, 401, 142ADSCrossRefGoogle Scholar
  46. Iwamoto, K., Nomoto, K., Höflich, P., Yamaoka, H., Kumagai, S., Shigeyama, T. 1994, ApJ, 437, L115ADSCrossRefGoogle Scholar
  47. Iwamoto, K. et al. 1998, Nature, 395, 672ADSCrossRefGoogle Scholar
  48. Iwamoto, K. et al. 2000, ApJ, 534, 660ADSCrossRefGoogle Scholar
  49. Janka, H.-T., Müller, E. 1994, A&A, 290, 496ADSGoogle Scholar
  50. Kawabata, K.S., Jeffery, D., Kosugi, G., Sasaki, T., et al. 2002, ApJ, 580, L39ADSCrossRefGoogle Scholar
  51. Kay, L.E., Halpern, J.P., Leighly, K.M., Heathcote, S., Magalhaes, A.M., Filippenko, A.V. 1998, IAU Circ., 6969Google Scholar
  52. Khokhlov, A.M., Höflich, P.A., Oran, E.S., Wheeler, J.C., Wang, L., Chtchelkanova, A.Yu. 1999, ApJ, 524, L107ADSCrossRefGoogle Scholar
  53. Kifonidis, K., Plewa, T., Janka, H-Th., Müller, E. 2000, ApJ, 531, L123ADSCrossRefGoogle Scholar
  54. Kinugasa, K., et al. 2002, ApJ, 577, L97ADSCrossRefGoogle Scholar
  55. Kippen, R.M. et al. 1998, GCN Circ., 67Google Scholar
  56. Knop, R., Aldering, G., Deustua, S., et al. 1999, IAU Circ., 7128Google Scholar
  57. Leonardo, D.C., Filippenko, A.V., Chornock, R., Foley, R.J., 2002, PASP, 114, 1333ADSCrossRefGoogle Scholar
  58. MacFadyen, A.I., & Woosley, S.E. 1999, ApJ, 524, 262ADSCrossRefGoogle Scholar
  59. MacFadyen, A.I., Woosley, S.E., Heger, A. 2001, ApJ, 550, 410ADSCrossRefGoogle Scholar
  60. Maeda, K., Nakamura, T., Nomoto, K., Mazzali, P.A., Patat, F., Hachisu, I. 2002, ApJ, 565, 405ADSCrossRefGoogle Scholar
  61. Maeda, K., Mazzali, P.A., Deng, J., Nomoto, K., Yoshii, Y., Tomita, H., Kobayashi, Y. 2003, ApJ, 593, in press (astro-ph/0305182)Google Scholar
  62. Maeda, K., & Nomoto, K. 2003, ApJ, submitted (astro-ph/0304172)Google Scholar
  63. Matheson, T., Filippenko, A.V., Li, W., Leonard, D.C., Shields, J.C. 2001, AJ, 121, 1648ADSCrossRefGoogle Scholar
  64. Mazzali, P.A., Iwamoto, K., Nomoto, K. 2000, ApJ, 545, 407ADSCrossRefGoogle Scholar
  65. Mazzali, P.A., Nomoto, K., Patat, F., Maeda, K. 2001, ApJ, 559, 1047ADSCrossRefGoogle Scholar
  66. Mazzali, P.A., et al. 2002, ApJ, 572, L61ADSCrossRefGoogle Scholar
  67. McKenzie, E.H., & Schaefer, B.E. 1999, PASP, 111, 964ADSCrossRefGoogle Scholar
  68. McWilliam, A., Preston, G.W., Sneden, C., Searle, L. 1995, AJ, 109, 2757ADSCrossRefGoogle Scholar
  69. Meikle, P., Lucy, L., Smartt, S., et al. 2002, IAU Circ., 7811Google Scholar
  70. Nagataki, S., Hashimoto, M., Sato, K., & Yamada, S. 1997, ApJ, 486, 1026ADSCrossRefGoogle Scholar
  71. Nakamura, T. 1998, Prog. Theor. Phys, 100, 921ADSCrossRefGoogle Scholar
  72. Nakamura, T., Umeda, H., Nomoto, K., Thielemann, F.-K., Burrows, A. 1999, ApJ, 517, 193ADSCrossRefGoogle Scholar
  73. Nakamura, T., Mazzali, P.A., Nomoto, K., Iwamoto, K. 2001a, ApJ, 550, 991ADSCrossRefGoogle Scholar
  74. Nakamura, T., Umeda, H., Iwamoto, K., Nomoto, K., Hashimoto, M., Hix, W.R., Thielemann, F.-K. 2001b, ApJ, 555, 880ADSCrossRefGoogle Scholar
  75. Nakano, S., Kushida, R., Li, W. 2002, IAU Circ., 7810Google Scholar
  76. Nomoto, K., & Hashimoto, M. 1988, Phys.Rep., 256, 173ADSCrossRefGoogle Scholar
  77. Nomoto, K., Suzuki, T., Shigeyama, T., Kumagai, S., Yamaoka, H., Saio, H. 1993, Nature, 364, 507ADSCrossRefGoogle Scholar
  78. Nomoto, K., et al. 1994, Nature, 371, 227ADSCrossRefGoogle Scholar
  79. Nomoto, K., Iwamoto, K., Suzuki, T. 1995, Phys. Rep., 256, 173ADSCrossRefGoogle Scholar
  80. Nomoto, K., et al. 2001a, in Supernovae and Gamma-Ray Bursts (Proceedings of the Space Telescope Science Institute Symposium, Baltimore, USA), eds. M. Livio, N. Panagia, K. Sahu (Cambridge), 144Google Scholar
  81. Nomoto, K., Maeda, K., Umeda, H., Nakamura, T. 2001b, in The Influence of Binaries on Stellar Populations Studies, ed. D. Vanbeveren (Kluwer), 507 (astro-ph/0105127)Google Scholar
  82. Nomoto, K., Maeda, K., Umeda, H., Ohkubo, T., Deng, J., Mazzali, P. 2003, in IAU Symp 212, A Massive Star Odyssey, from Main Sequence to Supernova, eds. van der Hucht, A. Herrero, & C. Esteban (ASP, San Francisco 2003), 395 (astro-ph/0209064)Google Scholar
  83. Norris, J.E., Ryan, S.G., & Beers, T.C. 2001, ApJ, 561, 1034ADSCrossRefGoogle Scholar
  84. Ohkubo, T., Umeda, H., & Nomoto, K., 2003, Nuc.Phys. A. 718, 632cGoogle Scholar
  85. Patat, F. et al. 2001, ApJ, 555, 917CrossRefGoogle Scholar
  86. Pinto, P., & Eastman, R. 2000, ApJ, 530, 744ADSCrossRefGoogle Scholar
  87. Podsiadlowski, Ph., Nomoto, K., Maeda, K., Nakamura, T., Mazzali, P.A., Schmidt, B. 2002, ApJ, 567, 491ADSCrossRefGoogle Scholar
  88. Primas, F., Reimers, D., Wisotzki, L., Reetz, J., Gehren, T., Beers, T.C. 2000, in The First Stars, ed. A. Weiss, et al. (Springer), 51CrossRefGoogle Scholar
  89. Reichart, D.E. 1999, ApJ, 521, L111ADSCrossRefGoogle Scholar
  90. Rigon, L., Turatto, M., Benetti, S., et al. 2003, MNRAS, 340, 191ADSCrossRefGoogle Scholar
  91. Ryan, S.G., Norris, J.E., Beers, T.C. 1996, ApJ, 471, 254ADSCrossRefGoogle Scholar
  92. Ryan, S.G. 2002, in CNO in the Universe, eds. C. Charbonnel, D. Schaerer, & G. Meynet, in press (astro-ph/0211608)Google Scholar
  93. Schaller, G., Schaerer, D., Meynet, G., Maeder, A. 1992, A&AS, 96, 269ADSGoogle Scholar
  94. Schneider, R., Ferrara, A., Natarajan, P., & Omukai, K. 2002, ApJ, 571, 30ADSCrossRefGoogle Scholar
  95. Sharina, M.E., Karachentsev, I.D., Tikhonov, N.A. 1996, A&AS, 119, 499ADSCrossRefGoogle Scholar
  96. Shigeyama, T., & Nomoto, K. 1990, ApJ, 360, 242ADSCrossRefGoogle Scholar
  97. Shigeyama, T., Suzuki, T., Kumagai, S., Nomoto, K., Saio, H., Yamaoka, H. 1994, ApJ, 420, 341ADSCrossRefGoogle Scholar
  98. Shigeyama, T., & Tsujimoto, T. 1998, ApJ, 507, L135ADSCrossRefGoogle Scholar
  99. Shimizu, T.M., Ebisuzaki, T., Sato, K., Yamada, S. 2001, ApJ, 552, 756ADSCrossRefGoogle Scholar
  100. Smartt, S.J., Vreeswijk, P., Ramirez-Ruiz, E., et al. 2002, ApJ, 572, L147ADSCrossRefGoogle Scholar
  101. Sneden, C., Gratton, R.G., Crocker, D.A. 1991, A&A, 246, 354ADSGoogle Scholar
  102. Sollerman, J., Kozma, C., Fransson, C., Leibundgut, B., Lundqvist, P., Ryde, F., Woudt, P. 2000, ApJ, 537, L 127Google Scholar
  103. Stanek, K.Z., et al. 2003, ApJ, in press (astro-ph/0304173)Google Scholar
  104. Stathakis, R.A., et al. 2000, MNRAS, 314, 807ADSCrossRefGoogle Scholar
  105. Suzuki, T., & Nomoto, K. 1995, ApJ, 455, 658ADSCrossRefGoogle Scholar
  106. Swartz, D.A., & Wheeler, J.C. 1991, ApJ, 379, L13ADSCrossRefGoogle Scholar
  107. Takada-Hidai, M., Aoki, W., Zhao, G. 2002, PASJ, 54, 899ADSGoogle Scholar
  108. Terlevich, R., Tenorio-Tagle, G., Franco, J., Melnick, J. 1992, MNRAS, 255, 713ADSGoogle Scholar
  109. Terlevich, R., Fabian, A., Turatto, M. 1999, IAU Circ., 7269Google Scholar
  110. Thielemann, F.-K., Nomoto, K., Hashimoto, M. 1996, ApJ, 460, 408ADSCrossRefGoogle Scholar
  111. Thorsett, S.E., & Hogg, D.W. 1999, GCN Cir., 197Google Scholar
  112. Turatto, M., et al. 1998, ApJ, 498, L129ADSCrossRefGoogle Scholar
  113. Turatto, M., Suzuki, T., et al. 2000, ApJ, 534, L57ADSCrossRefGoogle Scholar
  114. Umeda, H., & Nomoto, K. 2002, ApJ, 565, 385ADSCrossRefGoogle Scholar
  115. Umeda, H., Nomoto, K., Tsuru, T.G., Matsumoto, H. 2002, 578, 855Google Scholar
  116. Umeda, H., & Nomoto, K. 2003, Nature, 422, 871ADSCrossRefGoogle Scholar
  117. van den Heuvel, E.P.J. 1994, in Interacting Binaries, ed. H. Nussbaumer & A. Orr (Berlin: Springer Verlag), 263CrossRefGoogle Scholar
  118. Wang, L., & Wheeler, J.C. 1998, ApJ, 504, L87ADSCrossRefGoogle Scholar
  119. Wang, L., Baade, D., Fransson, C., et al. 2002, ApJ, submitted (astro-ph/0206386)Google Scholar
  120. Wheeler, J.C. 2001, ApJ, 504, 87Google Scholar
  121. Woosley, S.E., Eastman, R.G., Weaver, T.A., Pinto, P.A. 1994, ApJ, 429, 300ADSCrossRefGoogle Scholar
  122. Woosley, S.E., Langer, N., & Weaver, T.A. 1995, ApJ, 448, 315ADSCrossRefGoogle Scholar
  123. Woosley, S.E., & Weaver, T.A. 1995, ApJS, 101, 181ADSCrossRefGoogle Scholar
  124. Woosley, S.E., Eastman, R., Schmidt, B. 1999, ApJ, 516, 788ADSCrossRefGoogle Scholar
  125. Yoshii, Y. 1981, A&A, 97, 280ADSGoogle Scholar
  126. Young, T., Baron, E., Branch, D. 1995, ApJ, 449, L51ADSCrossRefGoogle Scholar
  127. Zampieri et al. 2003, MNRAS, 338, 711ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Ken’ichi Nomoto
    • 1
    • 2
  • Keiichi Maeda
    • 1
  • Paolo A. Mazzali
    • 2
    • 3
  • Hideyuki Umeda
    • 1
  • Jinsong Deng
    • 1
    • 2
  • Koichi Iwamoto
    • 4
  1. 1.Department of Astronomy, School of ScienceUniversity of TokyoJapan
  2. 2.Research Center for the Early Universe, School of ScienceUniversity of TokyoJapan
  3. 3.Osservatorio Astronomico di TriesteItaly
  4. 4.Department of Physics, College of Science and TechnologyNihon UniversityJapan

Personalised recommendations