Skip to main content

Inference of population subdivision from the VNTR distributions of New Zealanders

  • Chapter
Human Identification: The Use of DNA Markers

Abstract

A population sample from people of diverse ethnic origins living in New Zealand serves as a database to test methods for inference of population subdivision. The initial null hypothesis, that the population sample is homogeneous across ethnic groups, is easily rejected by likelihood ratio tests. Beyond this, methods for quantifying subdivision can be based on the probability of drawing alleles identical by descent (F ST ),probabilities of matching multiple locus genotypes, and occurrence of unique alleles. Population genetic theory makes quantitative predictions about the relation between F ST , population sizes, and rates of migration and mutation. Some VNTR loci have mutation rates of 10−2 per generation, but, contrary to theory, we find no consistent association between the degree of population subdivision and mutation rate. Quantification of population substructure also allows us to relate the magnitudes of genetic distances between ethnic groups in New Zealand to the colonization history of the country. The data suggests that the closest relatives to the Maori are Polynesians, and that no severe genetic bottleneck occurred when the Maori colonized New Zealand. One of the central points of contention regarding the application of VNTR loci in forensics is the appropriate means for estimating match probabilities. Simulations were performed to test the merits of the product rule in the face of subpopulation heterogeneity. Population heterogeneity results in large differences in estimates of multilocus genotype frequencies depending on which subpopulation is used for reference allele frequencies, but, of greater importance for forensic purposes, no five locus genotype had an expected frequency greater than 10−6. Although this implies that a match with an innocent individual is unlikely, in a large urban area such chance matches are going to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, A.J. and B.G. McFadgen, 1990. Prehistoric two-way voyaging between New Zealand and East Polynesia: Mayor Island obsidian on Raoul Island and possible Raoul Island obsidian in New Zealand. Archeology in Oceania 25: 24–37.

    Google Scholar 

  • Balazs, T.I., 1993. Population genetics of 14 ethnic groups using phenotypic data from VNTR loci. EXS. 67: 193–210.

    PubMed  CAS  Google Scholar 

  • Budowle, B. and K.L. Monson, 1993. The forensic significance of various reference population databases for estimating the rarity of variable number of tandem repeat ( VNTR) loci profiles. EXS. 67: 177–191.

    Google Scholar 

  • Chakraborty, R. and L.T.I. Jin, 1992. Heterozygote deficiency, population substructure and their implications in DNA fingerprinting. Hum. Genet. 88: 267–272.

    Google Scholar 

  • Chakraborty, R. and K.K. Kidd, 1991. The utility of DNA typing in forensic work. Science 254: 1735–1739.

    Article  PubMed  CAS  Google Scholar 

  • Church, G.M. and W. Gilbert, 1984. Genomic Sequencing. Proc. Natl. Acad. Sci. USA. 81: 1991–1995.

    Google Scholar 

  • Cockerham, C.C. and B.S. Weir, 1993. Estimation of gene flow from F-statistics. Evolution 47: 855–863.

    Article  Google Scholar 

  • Cohen, J.E., 1990. DNA fingerprinting for forensic identification: Potential effects on data interpretation of subpopulation heterogeneity and band number variability. Am. J. Hum. Genet. 46: 358–368.

    Google Scholar 

  • Crow, J.F. and K. Aoki, 1984. Group selection for a polygenic behavioural trait: estimating the degree of subdivision. Proc. Natl. Acad. Sci. USA 81: 6073–6077.

    Google Scholar 

  • Davidson, J.M., 1987. Maori origins, pp. 13–29 in The Prehistory of New Zealand, Longman Paul Limited, Auckland.

    Google Scholar 

  • Decorte, R., R. Wu, P. Marynen and J-J. Cassiman, 1994. Identification of internal variation in the pseudoautosomal VNTR DXYS17, with nonrandom distribution of the alleles on the X and Y chromosome. Am. J. Hum. Genet. 54: 506–515.

    Google Scholar 

  • Devlin, B. and N. Risch, 1992. Ethnic differentiation at VNTR loci, with special reference to forensic applications. Am. J. Hum. Gen. 51: 534–548

    Google Scholar 

  • Devlin, B., N. Risch and K. Roeder, 1990. No excess of homozygosity at loci used for DNA fingerprinting. Science 249: 1416–1420.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg, A.P. and B. Vogelstein, 1983. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6–13.

    Google Scholar 

  • Felsenstein, J., 1989. PHYLIP–Phylogeny Inference Package (Version 3.2). Cladistics 5: 164–166.

    Google Scholar 

  • Flint, J., A.J. Boyce, J.J. Martinson and J.B. Clegg, 1989. Population bottlenecks in Polynesia revealed by minisatellites. Hum Genet. 83: 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, J.F., 1994. Multi-locus and single-locus DNA profiling in New Zealand. Ph.D. Thesis, Victoria University of Wellington, New Zealand.

    Google Scholar 

  • Harding, R.M., A.J. Boyce and J.B. Clegg, 1992. The evolution of tandemly repetitive DNA: recombination rules. Genetics 132: 847–859.

    PubMed  CAS  Google Scholar 

  • Hernandez, J.L. and B.S. Weir, 1989. A disequilibrium coefficient approach to Hardy-Weinberg testing. Biometrics 45: 53–70.

    Article  PubMed  CAS  Google Scholar 

  • Herrin, G. 1992. A comparison of models used for calculation of RFLP pattern frequencies. J. Forensic Sci. 37: 1640–1651.

    PubMed  Google Scholar 

  • Hill, A.V.S., D.F. O’Shaughnessy and S.B. Clegg, 1989. The colonization of the Pacific: Some current hypotheses, pp. 246–285, in The Colonization of the Pacific: A Genetic Trail, edited by A.V.S. Hill and S.W. Serjeantson. Clarendon Press, Oxford.

    Google Scholar 

  • Jeffreys, A.J., N.J. Royle, V. Wilson and Z. Wong, 1988. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332: 278–281.

    Article  PubMed  CAS  Google Scholar 

  • Krane, D.E., R.W. Allen, S.A. Sawyer, S.A. Petrov and D.L. Hard, 1992. Genetic differences at four DNA typing loci in Finnish, Italian, and mixed Caucasian populations. Proc. Natl. Acad. Sci. USA 89: 10583–10587.

    Google Scholar 

  • Lander, E.S., 1989. DNA fingerprinting on trial. Nature 339: 501–505.

    Article  PubMed  CAS  Google Scholar 

  • Lange, K., 1993. Match probabilities in racially admixed populations. Am. J. Hum. Gen. 52: 305–311.

    Google Scholar 

  • Lewontin, R.C., 1982. Human Variety, pp. 1–13 in Human Diversity. Scientific American Books, W.H. Freeman and Company, San Francisco, CA.

    Google Scholar 

  • Lewontin, R.C. and D.L. Hartl, 1991. Population genetics in forensic DNA typing. Science 254: 1745–1750.

    Article  PubMed  CAS  Google Scholar 

  • Manly, B.F.J., 1991. Randomization and Monte Carlo Methods in Biology. Chapman and Hall, New York.

    Google Scholar 

  • Martinson, J.J., R.M. Harding, G. Philippon, F. Flye Saint Marie, J. Roux, A.J. Boyce and J.B. Clegg, 1993. Demographic reductions and genetic bottlenecks in humans: Minisatellite allele distribution in Oceania. Hum. Genet. 91: 445–450.

    Google Scholar 

  • Menotti-Raymond, M. and S. O’Brien, 1993. Dating the genetic bottleneck of the African cheetah. Proc. Natl. Acad. Sci. USA 90: 3172–3176.

    Google Scholar 

  • Nei, M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.

    Google Scholar 

  • Roe, A., 1993. Correlations and interactions in random walks and population genetics. Ph.D. Thesis, University of London.

    Google Scholar 

  • Sambrook, J., E.F. Fritsch and T. Maniatis, 1989. In Molecular Cloning: A Laboratory Manual ( 2nd edition ), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Serjeantson, S.W., 1989. HLA genes and antigens, pp. 120–173 in The Colonization of the Pacific: A Genetic Trail, edited by A. V. S. Hill and S.W. Serjeantson. Clarendon Press, Oxford.

    Google Scholar 

  • Serjeantson, S.W. and A.V.S. Hill, 1989. The colonization of the Pacific: A genetic trail, pp. 286–294 in The Colonization of the Pacific: The Genetic Evidence, edited by A. V. S. Hill and S.W. Serjeantson. Clarendon Press, Oxford.

    Google Scholar 

  • Shriver, M.D., L. Jin, R. Chakraborty and E. Boerwinkle, 1993. VNTR allele frequency distributions under the stepwise mutation model: a computer simulation approach. Genetics 134: 983993.

    Google Scholar 

  • Slimowitz, J.R. and J.E. Cohen, 1993. Violations of the ceiling principle: Exact conditions and statistical evidence. Am. J. Hum. Gen. 53: 314–323.

    Google Scholar 

  • Smith, J.C., R. Anwar, J. Riley, D. Jenner, A.F. Markham and A.J. Jeffreys, 1990. Highly polymorphic nùnisatellite sequences: Allele frequencies and mutation rates for five locus-specific probes in a Caucasian population. J. Forensic Sci. Soc. 30: 19–32.

    Google Scholar 

  • Southern, E.M., 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–527.

    Google Scholar 

  • Valdes, A.M., M. Slatkin and N.B. Freimer, 1993. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133: 737–749.

    PubMed  CAS  Google Scholar 

  • Weir, B.S., 1992a. Independence of VNTR alleles defined as fixed bins. Genetics 130: 873–887.

    PubMed  CAS  Google Scholar 

  • Weir, B.S., 1992b. Independence of VNTR alleles defined as floating bins. Am. J. Hum. Gen. 51: 992–997.

    Google Scholar 

  • Weir, B.S., 1993. Independence tests for VNTR alleles defined as quantile bins. Am. J. Hum. Genet. 53: 1107–1113.

    Google Scholar 

  • Weir, B.S., 1994. The effects of inbreeding on forensic calculations. Ann. Rev. Genet. 28: 597–621.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bruce S. Weir

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Clark, A.G., Hamilton, J.F., Chambers, G.K. (1995). Inference of population subdivision from the VNTR distributions of New Zealanders. In: Weir, B.S. (eds) Human Identification: The Use of DNA Markers. Contemporary Issues in Genetics and Evolution, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-0-306-46851-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-306-46851-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-1803-5

  • Online ISBN: 978-0-306-46851-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics