pp 1-9 | Cite as

Muscle Weakness, Cardiomyopathy, and L-2-Hydroxyglutaric Aciduria Associated with a Novel Recessive SLC25A4 Mutation

  • Anja von Renesse
  • Susanne Morales-Gonzalez
  • Esther Gill
  • Gajja S. Salomons
  • Werner Stenzel
  • Markus Schuelke
Research Report
Part of the JIMD Reports book series

Abstract

Background: Mutations in SLC25A4 (syn. ANT1, Adenine nucleotide translocase, type 1) are known to cause either autosomal dominant progressive external ophthalmoplegia (adPEO) or recessive mitochondrial myopathy, hypertrophic cardiomyopathy, and lactic acidosis.

Methods and Results: Whole exome sequencing in a young man with myopathy, subsarcolemmal mitochondrial aggregations, cardiomyopathy, lactic acidosis, and L-2-hydroxyglutaric aciduria (L-2-HGA) revealed a new homozygous mutation in SLC25A4 [c.653A>C, NM_001151], leading to the replacement of a highly conserved glutamine by proline [p.(Q218P); NP_001142] that most likely affects the folding of the ANT1 protein. No pathogenic mutation was found in L2HGDH, which is associated with “classic” L-2-HGA. Furthermore, L-2-HGDH enzymatic activity in the patient fibroblasts was normal. Long-range PCR and Southern blot confirmed absence of mtDNA-deletions in blood and muscle.

Conclusion: The disturbed ADP/ATP transport across the inner mitochondrial membrane may lead to an accumulation of different TCA-cycle intermediates such as 2-ketoglutarate (2-KG) in our patient. As L-2-HG is generated from 2-KG we hypothesize that the L-2-HG increase is a secondary effect of 2-KG accumulation. Hence, our report expands the spectrum of laboratory findings in ANT1-related diseases and hints towards a connection with organic acidurias.

Keywords

Cardiomyopathy Giant mitochondria L-2-hydroxyglutaric aciduria Mitochondrial disease Myopathy Ragged-red-fibers 

Notes

Acknowledgments

The authors thank the patient for participation in the study and Angelika Zwirner for excellent technical assistance.

Supplementary material

8904_2018_93_MOESM1_ESM.pdf (126 kb)
Supplementary Table 1 ■■■ (PDF 126 kb)
8904_2018_93_MOESM2_ESM.pdf (60 kb)
Supplementary Table 2 ■■■ (PDF 60 kb)

References

  1. Deschauer M, Hudson G, Müller T et al (2005) A novel ANT1 gene mutation with probable germline mosaicism in autosomal dominant progressive external ophthalmoplegia. Neuromuscul Disord 15:311–315.  https://doi.org/10.1016/j.nmd.2004.12.004CrossRefGoogle Scholar
  2. Dolce V, Scarcia P, Iacopetta D, Palmieri F (2005) A fourth ADP/ATP carrier isoform in man: identification, bacterial expression, functional characterization and tissue distribution. FEBS Lett 579:633–637.  https://doi.org/10.1016/j.febslet.2004.12.034CrossRefGoogle Scholar
  3. Echaniz-Laguna A, Chassagne M, Ceresuela J et al (2012) Complete loss of expression of the ANT1 gene causing cardiomyopathy and myopathy. J Med Genet 49:146–150.  https://doi.org/10.1136/jmedgenet-2011-100504CrossRefGoogle Scholar
  4. Esposito LA, Melov S, Panov A et al (1999) Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci U S A 96:4820–4825Google Scholar
  5. Graham BH, Waymire KG, Cottrell B et al (1997) A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 16:226–234.  https://doi.org/10.1038/ng0797-226CrossRefGoogle Scholar
  6. James AW, Miranda SG, Culver K et al (2007) DOOR syndrome: clinical report, literature review and discussion of natural history. Am J Med Genet A 143A:2821–2831.  https://doi.org/10.1002/ajmg.a.32054CrossRefGoogle Scholar
  7. Kaufman EE, Nelson T, Fales HM, Levin DM (1988a) Isolation and characterization of a hydroxyacid-oxoacid transhydrogenase from rat kidney mitochondria. J Biol Chem 263:16872–16879Google Scholar
  8. Kaufman EE, Nelson T, Miller D, Stadlan N (1988b) Oxidation of γ-Hydroxybutyrate to succinic semialdehyde by a mitochondrial pyridine nucleotide-independent enzyme. J Neurochem 51:1079–1084.  https://doi.org/10.1111/j.1471-4159.1988.tb03071.xCrossRefGoogle Scholar
  9. Kaukonen J, Juselius JK, Tiranti V et al (2000) Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 289:782–785.  https://doi.org/10.1126/science.289.5480.782CrossRefGoogle Scholar
  10. Komaki H, Fukazawa T, Houzen H et al (2002) A novel D104G mutation in the adenine nucleotide translocator 1 gene in autosomal dominant progressive external ophthalmoplegia patients with mitochondrial DNA with multiple deletions. Ann Neurol 51:645–648.  https://doi.org/10.1002/ana.10172CrossRefGoogle Scholar
  11. Körver-Keularts IMLW, de Visser M, Bakker HD et al (2015) Two novel mutations in the SLC25A4 gene in a patient with mitochondrial myopathy. JIMD Rep 22:39–45.  https://doi.org/10.1007/8904_2015_409CrossRefGoogle Scholar
  12. Kranendijk M, Salomons GS, Gibson KM et al (2009) Development and implementation of a novel assay for l-2-hydroxyglutarate dehydrogenase (l-2-HGDH) in cell lysates: l-2-HGDH deficiency in 15 patients with l-2-hydroxyglutaric aciduria. J Inherit Metab Dis 32:713.  https://doi.org/10.1007/s10545-009-1282-xCrossRefGoogle Scholar
  13. Lek M, Karczewski KJ, Minikel EV et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291.  https://doi.org/10.1038/nature19057CrossRefGoogle Scholar
  14. Liu Y, Wang X, Chen XJ (2015) Misfolding of mutant adenine nucleotide translocase in yeast supports a novel mechanism of Ant1-induced muscle diseases. Mol Biol Cell 26:1985–1994.  https://doi.org/10.1091/mbc.E15-01-0030CrossRefGoogle Scholar
  15. Lorenz C, Lesimple P, Bukowiecki R et al (2017) Human iPSC-derived neural progenitors are an effective drug discovery model for neurological mtDNA disorders. Cell Stem Cell 20:659–674.e9.  https://doi.org/10.1016/j.stem.2016.12.013CrossRefGoogle Scholar
  16. Napoli L, Bordoni A, Zeviani M et al (2001) A novel missense adenine nucleotide translocator-1 gene mutation in a Greek adPEO family. Neurology 57:2295–2298Google Scholar
  17. Palmieri L, Alberio S, Pisano I et al (2005) Complete loss-of-function of the heart/muscle-specific adenine nucleotide translocator is associated with mitochondrial myopathy and cardiomyopathy. Hum Mol Genet 14:3079–3088.  https://doi.org/10.1093/hmg/ddi341CrossRefGoogle Scholar
  18. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–423.  https://doi.org/10.1038/gim.2015.30CrossRefGoogle Scholar
  19. Rzem R, Vincent M-F, Schaftingen EV, Veiga-da-Cunha M (2007) L-2-hydroxyglutaric aciduria, a defect of metabolite repair. J Inherit Metab Dis 30:681.  https://doi.org/10.1007/s10545-007-0487-0CrossRefGoogle Scholar
  20. Seelow D, Schuelke M (2012) HomozygosityMapper2012 – bridging the gap between homozygosity mapping and deep sequencing. Nucleic Acids Res 40:W516–W520.  https://doi.org/10.1093/nar/gks487CrossRefGoogle Scholar
  21. Stepien G, Torroni A, Chung AB et al (1992) Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem 267:14592–14597Google Scholar
  22. Strauss KA, DuBiner L, Simon M et al (2013) Severity of cardiomyopathy associated with adenine nucleotide translocator-1 deficiency correlates with mtDNA haplogroup. Proc Natl Acad Sci 110:3453–3458.  https://doi.org/10.1073/pnas.1300690110CrossRefGoogle Scholar
  23. Struys EA, Jansen EEW, Verhoeven NM, Jakobs C (2004) Measurement of urinary D- and L-2-hydroxyglutarate enantiomers by stable-isotope-dilution liquid chromatography–tandem mass spectrometry after derivatization with diacetyl-L-tartaric anhydride. Clin Chem 50:1391–1395.  https://doi.org/10.1373/clinchem.2004.033399CrossRefGoogle Scholar
  24. Struys EA, Verhoeven NM, Brink HJT et al (2005) Kinetic characterization of human hydroxyacid–oxoacid transhydrogenase: relevance toD-2-hydroxyglutaric and γ-hydroxybutyric acidurias. J Inherit Metab Dis 28:921–930.  https://doi.org/10.1007/s10545-005-0114-xCrossRefGoogle Scholar
  25. Tang Y, Schon EA, Wilichowski E et al (2000) Rearrangements of human mitochondrial DNA (mtDNA): new insights into the regulation of mtDNA copy number and gene expression. Mol Biol Cell 11:1471–1485.  https://doi.org/10.1091/mbc.11.4.1471CrossRefGoogle Scholar
  26. The 1000 Genomes Project Consortium (2015) A global reference for human genetic variation. Nature 526:68–74.  https://doi.org/10.1038/nature15393CrossRefGoogle Scholar
  27. Thompson K, Majd H, Dallabona C et al (2016) Recurrent de novo dominant mutations in SLC25A4 cause severe early-onset mitochondrial disease and loss of mitochondrial DNA copy number. Am J Hum Genet 99:860–876.  https://doi.org/10.1016/j.ajhg.2016.08.014CrossRefGoogle Scholar
  28. von Renesse A, Petkova MV, Lützkendorf S et al (2014) POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability. J Med Genet 51:275–282.  https://doi.org/10.1136/jmedgenet-2013-102236CrossRefGoogle Scholar
  29. Weissensteiner H, Pacher D, Kloss-Brandstätter A et al (2016) HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res 44:W58–W63.  https://doi.org/10.1093/nar/gkw233CrossRefGoogle Scholar

Copyright information

© Society for the Study of Inborn Errors of Metabolism (SSIEM) 2018

Authors and Affiliations

  • Anja von Renesse
    • 1
    • 2
  • Susanne Morales-Gonzalez
    • 1
  • Esther Gill
    • 1
  • Gajja S. Salomons
    • 3
  • Werner Stenzel
    • 4
  • Markus Schuelke
    • 1
    • 2
  1. 1.NeuroCure Clinical Research CenterCharité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH)BerlinGermany
  2. 2.Department of NeuropediatricsCharité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH)BerlinGermany
  3. 3.Metabolic Unit, Department of Clinical Chemistry, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
  4. 4.Department of NeuropathologyCharité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH)BerlinGermany

Personalised recommendations