Skip to main content

Severe Leukoencephalopathy with Clinical Recovery Caused by Recessive BOLA3 Mutations

  • Research Report
  • Chapter
  • First Online:
Book cover JIMD Reports, Volume 43

Abstract

Aim: To identify the genetic aetiology of a distinct leukoencephalopathy causing acute neurological regression in infancy with apparently complete clinical recovery. Methods: We performed trio whole genome sequencing (WGS) to determine the genetic basis of the disorder. Mitochondrial function analysis in cultured patient fibroblasts was undertaken to confirm the pathogenicity of candidate variants. Results: The patient presented at 18 months with acute hemiplegia and cognitive regression without obvious trigger. This was followed by clinical recovery over 4 years. MRI at disease onset revealed bilateral T2 hyperintensity involving the periventricular and deep white matter and MR spectroscopy of frontal white matter demonstrated a lactate doublet. Lactate levels and mitochondrial respiratory chain enzyme activity in muscle, liver and fibroblasts were normal. Plasma glycine was elevated. The MRI abnormalities improved. WGS identified compound heterozygous variants in BOLA3: one previously reported (c.136C>T, p.Arg46*) and one novel variant (c.176G>A, p.Cys59Tyr). Analysis of cultured patient fibroblasts demonstrated deficient pyruvate dehydrogenase (PDH) activity and reduced quantity of protein subunits of mitochondrial complexes I and II, consistent with BOLA3 dysfunction. Previously reported cases of multiple mitochondrial dysfunctions syndrome 2 (MMDS2) with hyperglycinaemia caused by BOLA3 mutations have leukodystrophy with severe, progressive neurological and multisystem disease. Conclusions: We report a novel phenotype for MMDS2 associated with apparently complete clinical recovery and partial resolution of MRI abnormalities. We have identified a novel disease-causing variant in BOLA3 validated by functional cellular studies. Our patient’s clinical course broadens the phenotypic spectrum of MMDS2 and highlights the potential for some genetic leukoencephalopathies to spontaneously improve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajit Bolar N, Vanlander AV, Wilbrecht C, Van der Aa N, Smet J, De Paepe B, Vandeweyer G, Kooy F, Eyskens F, De Latter E, Delanghe G, Govaert P, Leroy JG, Loeys B, Lill R, Van Laer L, Van Coster R (2013) Mutation of the iron-sulfur cluster assembly gene IBA57 causes severe myopathy and encephalopathy. Hum Mol Genet 22(13):2590–2602

    Article  CAS  Google Scholar 

  • Al-Hassnan ZN, Al-Dosary M, Alfadhel M, Faqeih EA, Alsagob M, Kenana R, Almass R, Al-Harazi OS, Al-Hindi H, Malibari OI, Almutari FB, Tulbah S, Alhadeq F, Al-Sheddi T, Alamro R, AlAsmari A, Almuntashri M, Alshaalan H, Al-Mohanna FA, Colak D, Kaya N (2015) ISCA2 mutation causes infantile neurodegenerative mitochondrial disorder. J Med Genet 52(3):186–194

    Article  CAS  Google Scholar 

  • Baker PR 2nd, Friederich MW, Swanson MA, Shaikh T, Bhattacharya K, Scharer GH, Aicher J, Creadon-Swindell G, Geiger E, MacLean KN, Lee WT, Deshpande C, Freckmann ML, Shih LY, Wasserstein M, Rasmussen MB, Lund AM, Procopis P, Cameron JM, Robinson BH, Brown GK, Brown RM, Compton AG, Dieckmann CL, Collard R, Coughlin CR 2nd, Spector E, Wempe MF, Van Hove JL (2014) Variant non ketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5. Brain 137(Pt 2):366–379

    Article  Google Scholar 

  • Cameron JM, Janer A, Levandovskiy V, Mackay N, Rouault TA, Tong WH, Ogilvie I, Shoubridge EA, Robinson BH (2011) Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. Am J Hum Genet 89(4):486–495

    Article  CAS  Google Scholar 

  • Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2):80–92

    Article  CAS  Google Scholar 

  • Frazier AE, Thorburn DR (2012) Biochemical analyses of the electron transport chain complexes by spectrophotometry. Methods Mol Biol 837:49–62

    Article  CAS  Google Scholar 

  • Haack TB, Rolinski B, Haberberger B, Zimmermann F, Schum J, Strecker V, Graf E, Athing U, Hoppen T, Wittig I, Sperl W, Freisinger P, Mayr JA, Strom TM, Meitinger T, Prokisch H (2013) Homozygous missense mutation in BOLA3 causes multiple mitochondrial dysfunctions syndrome in two siblings. J Inherit Metab Dis 36(1):55–62

    Article  CAS  Google Scholar 

  • Helman G, Caldovic L, Whitehead MT, Simons C, Brockmann K, Edvardson S, Bai R, Moroni I, Taylor JM, Van Haren K, S. D. H. S. Group, Taft RJ, Vanderver A, van der Knaap MS (2016) Magnetic resonance imaging spectrum of succinate dehydrogenase-related infantile leukoencephalopathy. Ann Neurol 79(3):379–386

    Article  CAS  Google Scholar 

  • Kohda M, Tokuzawa Y, Kishita Y, Nyuzuki H, Moriyama Y, Mizuno Y, Hirata T, Yatsuka Y, Yamashita-Sugahara Y, Nakachi Y, Kato H, Okuda A, Tamaru S, Borna NN, Banshoya K, Aigaki T, Sato-Miyata Y, Ohnuma K, Suzuki T, Nagao A, Maehata H, Matsuda F, Higasa K, Nagasaki M, Yasuda J, Yamamoto M, Fushimi T, Shimura M, Kaiho-Ichimoto K, Harashima H, Yamazaki T, Mori M, Murayama K, Ohtake A, Okazaki Y (2016) A comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies. PLoS Genet 12(1):e1005679

    Article  Google Scholar 

  • Lake NJ, Webb BD, Stroud DA, Richman TR, Ruzzenente B, Compton AG, Mountford HS, Pulman J, Zangarelli C, Rio M, Bodaert N, Assouline Z, Sherpa MD, Schadt EE, Houten SM, Byrnes J, McCormick EM, Zolkipli-Cunningham Z, Haude K, Zhang Z, Retterer K, Bai R, Calvo SE, Mootha VK, Christodoulou J, Rotig A, Filipovska A, Cristian I, Falk MJ, Metodiev MD, Thorburn DR (2017) Biallelic mutations in MRPS34 lead to instability of the small mitoribosomal subunit and Leigh syndrome. Am J Hum Genet 101(2):239–254

    Article  CAS  Google Scholar 

  • Lebigot E, Gaignard P, Dorboz I, Slama A, Rio M, de Lonlay P, Heron B, Sabourdy F, Boespflug-Tanguy O, Cardoso A, Habarou F, Ottolenghi C, Therond P, Bouton C, Golinelli-Cohen MP, Boutron A (2017) Impact of mutations within the [Fe-S] cluster or the lipoic acid biosynthesis pathways on mitochondrial protein expression profiles in fibroblasts from patients. Mol Genet Metab 122:85–94

    Article  CAS  Google Scholar 

  • Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won HH, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG, C. Exome Aggregation (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291

    Article  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, S. Genome Project Data Processing (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  Google Scholar 

  • Lopez-Hernandez T, Ridder MC, Montolio M, Capdevila-Nortes X, Polder E, Sirisi S, Duarri A, Schulte U, Fakler B, Nunes V, Scheper GC, Martinez A, Estevez R, van der Knaap MS (2011) Mutant GlialCAM causes megalencephalic leukoencephalopathy with subcortical cysts, benign familial macrocephaly, and macrocephaly with retardation and autism. Am J Hum Genet 88(4):422–432

    Article  CAS  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article  CAS  Google Scholar 

  • Melber A, Na U, Vashisht A, Weiler BD, Lill R, Wohlschlegel JA, Winge DR (2016) Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients. elife 5:e15991

    Article  Google Scholar 

  • Morato L, Bertini E, Verrigni D, Ardissone A, Ruiz M, Ferrer I, Uziel G, Pujol A (2014) Mitochondrial dysfunction in central nervous system white matter disorders. Glia 62(11):1878–1894

    Article  Google Scholar 

  • Nasta V, Giachetti A, Ciofi-Baffoni S, Banci L (2017) Structural insights into the molecular function of human [2Fe-2S] BOLA1-GRX5 and [2Fe-2S] BOLA3-GRX5 complexes. Biochim Biophys Acta 1861(8):2119–2131

    Article  CAS  Google Scholar 

  • Parikh S, Bernard G, Leventer RJ, van der Knaap MS, van Hove J, Pizzino A, McNeill NH, Helman G, Simons C, Schmidt JL, Rizzo WB, Patterson MC, Taft RJ, Vanderver A, G. Consortium (2015) A clinical approach to the diagnosis of patients with leukodystrophies and genetic leukoencephelopathies. Mol Genet Metab 114(4):501–515

    Article  CAS  Google Scholar 

  • Rahman S, Blok RB, Dahl HH, Danks DM, Kirby DM, Chow CW, Christodoulou J, Thorburn DR (1996) Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 39(3):343–351

    Article  CAS  Google Scholar 

  • Schiffmann R, van der Knaap MS (2009) Invited article: an MRI-based approach to the diagnosis of white matter disorders. Neurology 72(8):750–759

    Article  Google Scholar 

  • Seyda A, Newbold RF, Hudson TJ, Verner A, MacKay N, Winter S, Feigenbaum A, Malaney S, Gonzalez-Halphen D, Cuthbert AP, Robinson BH (2001) A novel syndrome affecting multiple mitochondrial functions, located by microcell-mediated transfer to chromosome 2p14-2p13. Am J Hum Genet 68(2):386–396

    Article  CAS  Google Scholar 

  • Shukla A, Hebbar M, Srivastava A, Kadavigere R, Upadhyai P, Kanthi A, Brandau O, Bielas S, Girisha KM (2017) Homozygous p.(Glu87Lys) variant in ISCA1 is associated with a multiple mitochondrial dysfunctions syndrome. J Hum Genet 62(7):723–727

    Article  CAS  Google Scholar 

  • Steenweg ME, Ghezzi D, Haack T, Abbink TE, Martinelli D, van Berkel CG, Bley A, Diogo L, Grillo E, Te Water Naude J, Strom TM, Bertini E, Prokisch H, van der Knaap MS, Zeviani M (2012) Leukoencephalopathy with thalamus and brainstem involvement and high lactate ‘LTBL’ caused by EARS2 mutations. Brain 135(Pt 5):1387–1394

    Article  Google Scholar 

  • Torraco A, Ardissone A, Invernizzi F, Rizza T, Fiermonte G, Niceta M, Zanetti N, Martinelli D, Vozza A, Verrigni D, Di Nottia M, Lamantea E, Diodato D, Tartaglia M, Dionisi-Vici C, Moroni I, Farina L, Bertini E, Ghezzi D, Carrozzo R (2017) Novel mutations in IBA57 are associated with leukodystrophy and variable clinical phenotypes. J Neurol 264(1):102–111

    Article  CAS  Google Scholar 

  • Uzarska MA, Nasta V, Weiler BD, Spantgar F, Ciofi-Baffoni S, Saviello MR, Gonnelli L, Muhlenhoff U, Banci L, Lill R (2016) Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron-sulfur proteins. elife 5:e16673

    Article  Google Scholar 

  • Van der Knaap MS, Valk J (2005) Magnetic resonance of myelination and myelin disorders. Springer, Berlin

    Book  Google Scholar 

  • Wong LJ (2012) Mitochondrial syndromes with leukoencephalopathies. Semin Neurol 32(1):55–61

    Article  Google Scholar 

Download references

Acknowledgements

We thank the family for participating in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Stutterd .

Editor information

Editors and Affiliations

Additional information

Communicated by: Jerry Vockley, M.D., Ph.D.

Electronic Supplementary Material

Supplementary Fig. 1

Chromatograms showing sequence variants in our patient and his parents (TIFF 88 kb)

Supplementary Fig. 2

Protein sequence alignment of human BOLA3 with its homologs in nine other vertebrate species showing the conservation of the p.Cys59 residue mutated in our patient. Asterisks (*) depict conserved amino acids (TIFF 93 kb)

Supplementary Fig. 3

Magnetic resonance spectroscopy A) At presentation at 18 months of age: Single voxel spectrum of the left frontal white matter demonstrates a massive lactate doublet (arrow) with decreased N-acetylaspartate (NAA). B) At 4 years of age demonstrates a significant reduction in the degree of lactate peak (arrow) in the frontal region with associated increase in the NAA (TIFF 1309 kb)

Appendices

Synopsis

We report a novel phenotype for MMDS2 associated with apparent clinical recovery and partial resolution of MRI abnormalities, highlighting the potential for some genetic leukoencephalopathies to spontaneously improve.

Conflict of Interest

Chloe Stutterd, Nicole Lake, Heidi Peters, Paul Lockhart, Ryan Taft, Marjo van der Knaap, David Thorburn, Cas Simons and Richard Leventer declare that they have no conflict of interest. Adeline Vanderver receives in kind and research support from Illumina, Shire, Gilead, Eli Lilly and Ionis.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Author Contributions

Conception and design of the study: RL, CAS, NL, DT and PL.

Acquisition and analysis of data: CAS, NL, HP, RT, MV, AV and CS.

Drafting a significant portion of the manuscript or figures: CAS, NL, DT and RL.

Details of Funding

CAS was supported by NHMRC Postgraduate Scholarship (ID: APP1133266) and the Royal Children’s Hospital/Murdoch Children’s Research Institute Flora Suttie Neurogenetics Fellowship made possible by the Thyne-Reid Foundation and the Macquarie Foundation. RJL is supported by a Melbourne Children’s Clinician Scientist Fellowship. This work was supported by the Victorian Government’s Operational Infrastructure Support Program and Australian Government National Health and Medical Research Council Independent Research Institute Infrastructure Support Scheme (NHMRC IRIISS) and NHMRC Project Grant 1068278. The authors confirm independence from the sponsors; the content of the article has not been influenced by the sponsors.

Corresponding Author

Dr. Chloe Stutterd.

Murdoch Children’s Research Institute.

50 Flemington Road.

Parkville, Victoria, 3052, Australia.

Email: chloe.stutterd@mcri.edu.au.

Phone: +61383416201, Fax: +61383416390.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Society for the Study of Inborn Errors of Metabolism (SSIEM)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stutterd, C.A. et al. (2018). Severe Leukoencephalopathy with Clinical Recovery Caused by Recessive BOLA3 Mutations. In: Morava, E., Baumgartner, M., Patterson, M., Rahman, S., Zschocke, J., Peters, V. (eds) JIMD Reports, Volume 43. JIMD Reports, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8904_2018_100

Download citation

  • DOI: https://doi.org/10.1007/8904_2018_100

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58613-6

  • Online ISBN: 978-3-662-58614-3

  • eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)

Publish with us

Policies and ethics