Haematopoietic Stem Cell Transplantation Arrests the Progression of Neurodegenerative Disease in Late-Onset Tay-Sachs Disease

  • Karolina M. StepienEmail author
  • Su Han Lum
  • J. Edmond Wraith
  • Christian J. Hendriksz
  • Heather J. Church
  • David Priestman
  • Frances M. Platt
  • Simon Jones
  • Ana Jovanovic
  • Robert Wynn
Research Report
Part of the JIMD Reports book series (JIMD, volume 41)


Tay-Sachs disease is a rare metabolic disease caused by a deficiency of hexosaminidase A that leads to accumulation of GM2 gangliosides predominantly in neural tissue. Late-onset Tay-Sachs disease variant is associated with a higher level of residual HexA activity. Treatment options are limited, and there are a few described cases who have undergone haematopoietic stem cell transplantation (HSCT) with variable outcome.

We describe a case of a 23-year-old male patient who presented with a long-standing tremor since 7 years of age. He had gait ataxia, a speech stammer and swallowing problems. His condition had had a static course apart from his tremor that had been gradually deteriorating. Because of the deterioration in his neurological function, the patient had an uneventful, matched-sibling donor bone marrow transplant at the age of 15 years. Eight years post-HSCT, at the age of 23, he retains full donor engraftment, and his white cell beta-HexA of 191 nmol/mg/h is comparable to normal controls (in-assay control = 187). He continues to experience some intentional tremor that is tolerable for daily life and nonprogressive since HSCT.

Conclusion: HSCT is a potential treatment option which might arrest neurodegeneration in patients with LOTS.


Haematopoietic stem cell transplantation Late onset Tay-Sachs disease 



GalNAc beta1-4 Gal beta 1-4 Glc-ceramide


GalNAc beta 1-4 [NeuAc alpha 2-3] Gal beta 1-4 Glc-ceramide

Hexa A/B

Hexosaminidase A/B


Haematopoietic stem cell


Haematopoietic stem cell transplantation


GlcNAc beta1-3 Gal beta 1-4 Glc-ceramide


Late-onset Tay-Sachs


Lysosomal storage disease


Tay-Sachs disease


  1. Andersson U, Smith D, Jeyakumar M et al (2004) Improved outcome of N-butyldeoxygalactonojirimycin-mediated substrate reduction therapy in a mouse model of Sandhoff disease. Neurobiol Dis 16:506–515CrossRefGoogle Scholar
  2. Bley AE, Giannikopoulos OA, Hayden D et al (2011) Natural history of infantile GM2 gangliosidosis. Pediatrics 128(5):1233–1241CrossRefGoogle Scholar
  3. Cachon-Gonzalez MB, Wang SZ, Lynch A et al (2006) Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc Natl Acad Sci U S A 5:10373–10378CrossRefGoogle Scholar
  4. Clarke JT, Mahuran DJ, Sathe S et al (2011) An open-label phase I/II clinical trial of pyrimethamine for the treatment of patients affected with chronic GM2 gangliosidosis (Tay-Sachs or Sandhoff variants). Mol Genet Metab 102:6–12CrossRefGoogle Scholar
  5. Codeiro P, Hechtmann P, Kaplan F (2000) The GM2 gangliosidoses databases: allelic variation at the HEXA, HEXB, and GM2A gene loci. Genet Med 2(6):319–327CrossRefGoogle Scholar
  6. Godeiro-Junior C, Felicio AC, Benites V et al (2009) Late-onset hexosaminidase A deficiency mimicking primary lateral sclerosis. Arq Neuropsiquiatr 67:105–106CrossRefGoogle Scholar
  7. Golebiowski D, van der Bom IMJ, Kwon CS et al (2017) Direct intracranial injection of AAVrh8 encoding monkey beta-N-acetylhexosaminidase causes neurotoxicity in the primate brain. Hum Gene Ther 28(6):510–522CrossRefGoogle Scholar
  8. Gravel RA, Clarke JTR, Kaback MM et al (1995) The GM2 gangliosidoses. In: Scriver CR, Beaudet AL, Sly WS et al (eds) The metabolic and molecular basis of inherited disease, 7th edn. McGraw-Hill, New York, pp 2839–2882Google Scholar
  9. Guidotti JE, Akli S, Castelnau-Ptakhine L et al (1998) Retrovirus-mediated enzymatic correction of Tay-Sachs defect in transduced and non-transduced cells. Hum Mol Genet 7:831–838CrossRefGoogle Scholar
  10. Jacobs JFM, Willemsen MAAP, Groot-Loonen JJ et al (2005) Allogenic BMT followed by substrate reduction therapy in a child with subacute Tay-Sachs disease. Bone Marrow Transplant 36:925–926CrossRefGoogle Scholar
  11. Jeyakumar M, Norflus F, Tifft CJ et al (2001) Enhanced survival in Sandhoff disease mice receiving a combination of substrate deprivation therapy and bone marrow transplantation. Blood 7:327–329CrossRefGoogle Scholar
  12. Jeyakumar M, Smith DA, Williams IM et al (2004) NSAIDs increase survival in the Sandhoff disease mouse: synergy with N-butyldeoxynojirimycin. Ann Neurol 56:642–649CrossRefGoogle Scholar
  13. Kyrkanides S, Miller JN, Tallents RH et al (2007) Intraperitoneal inoculation of Sandhoff mouse neonates with an HIV-1 based lentiviral vector exacerbates the attendant neuroinflammation and disease phenotype. J Neuroimmunol 188:39–47CrossRefGoogle Scholar
  14. Lacorazza HD, Flax JD, Snyder EY, Jendoubi M (1996) Expression of human beta-hexosaminidase alpha-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells. Nat Med 2(4):424–429CrossRefGoogle Scholar
  15. Lee JP, Jeyakumar M, Gonzalez R et al (2007) Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med 13:439–447CrossRefGoogle Scholar
  16. Mahuran DJ (1995) Beta-hexosaminidase: biosynthesis and processing of the normal enzyme, and identification of mutations causing Jewish Tay–Sachs disease. Clin Biochem 28:101–106CrossRefGoogle Scholar
  17. Matsuoka K, Tamura T, Tsuji D et al (2011) Therapeutic potential of intracerebroventricular replacement of modified human β-hexosaminidase B for GM2 gangliosidosis. Mol Ther 19:1017–1024CrossRefGoogle Scholar
  18. Myerowitz R (1997) Tay–Sachs disease-causing mutations and neutral polymorphisms in the Hex A gene. Hum Mutat 9:195–208CrossRefGoogle Scholar
  19. Neudorfer O, Pastores GM, Zeng BJ et al (2005) Late-onset Tay-Sachs disease: phenotypic characterization and genotypic correlations in 21 affected patients. Genet Med 7:119–123CrossRefGoogle Scholar
  20. Neville DC, Coquard V, Priestman DA et al (2004) Analysis of fluorescently labeled glycosphingolipid-derived oligosaccharides following ceramide glycanase digestion and anthranilic acid labeling. Anal Biochem 331:275–282CrossRefGoogle Scholar
  21. Norflus F, Tifft CJ, McDonald MP et al (1998) Bone marrow transplantation prolongs life span and ameliorates neurologic manifestations in Sandhoff disease mice. J Clin Invest 101:1881–1888CrossRefGoogle Scholar
  22. Osher E, Fattal-Valevski A, Sagie L et al (2015) Effect of cyclic, low dose pyrimethamine treatment in patients with late onset Tay Sachs: an open label, extended pilot study. Orphanet J Rare Dis 10:45CrossRefGoogle Scholar
  23. Rosebush PI, MacQueen GM, Clarke JTR, Callahan JW, Strasberg PM, Mazurek MF (1995) Late-onset Tay-Sachs disease presenting as catatonic schizophrenia: diagnostic and treatment issues. J Clin Psychiatry 56(8):347–353PubMedGoogle Scholar
  24. Rountree JS, Butters TD, Wormald MR et al (2009) Design, synthesis, and biological evaluation of enantiomeric beta-N-acetylhexosaminidase inhibitors LABNAc and DABNAc as potential agents against Tay-Sachs and Sandhoff disease. Chem Med Chem 4:378–392CrossRefGoogle Scholar
  25. Rowland LP (2010) Progressive muscular atrophy and other lower motor neuron syndromes of adults. Muscle Nerve 41:161–165CrossRefGoogle Scholar
  26. Sandhoff K, Christomanou K (1979) Biochemistry and genetics of gangliosidoses. Hum Genet 50:107–143CrossRefGoogle Scholar
  27. Sargeant TJ, Wang S, Bradley J, Smith NJ, Raha AA, McNair R, Ziegler RJ, Cheng SH, Cox TM, Cachón-González MB (2011) Adeno-associated virus-mediated expression of β-hexosaminidase prevents neuronal loss in the Sandhoff mouse brain. Hum Mol Genet 20(22):4371–4380CrossRefGoogle Scholar
  28. Shapiro BE, Natowicz MR (2009) Late-onset Tay-Sachs disease presenting as a childhood stutter. J Neurol Neurosurg Psychiatry 80:94–95CrossRefGoogle Scholar
  29. Shapiro BE, Logigian EL, Kolodny EH, Pastores GM (2008) Late-onset Tay-Sachs disease: the spectrum of peripheral neuropathy in 30 affected patients. Muscle Nerve 38:1012–1015CrossRefGoogle Scholar
  30. Shapiro BE, Pastores GM, Gianutsos J, Luzy C, Kolodny EH (2009) Miglustat in late-onset Tay-Sachs disease: a 12-month, randomized, controlled clinical study with 24 months of extended treatment. Genet Med 11:425–433CrossRefGoogle Scholar
  31. Shield JP, Stone J, Steward CG (2005) Bone marrow transplantation correcting beta-galactosidase activity does not influence neurological outcome in juvenile GM1-gangliosidosis. J Inherit Metab Dis 28(5):797–798CrossRefGoogle Scholar
  32. Suzuki K (1991) Neuropathology of late-onset gangliosidoses. Dev Neurosci 13:205–210CrossRefGoogle Scholar
  33. Tropak MB, Reid SP, Guiral M, Withers SG, Mahuran D (2004) Pharmacological enhancement of beta-hexosaminidase activity in fibroblasts from adult Tay-Sachs and Sandhoff patients. J Biol Chem 279:13478–13487CrossRefGoogle Scholar
  34. Wada R, Tifft CJ, Proia RL (2000) Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. PNAS 97:10954–10959CrossRefGoogle Scholar

Copyright information

© Society for the Study of Inborn Errors of Metabolism (SSIEM) 2017

Authors and Affiliations

  • Karolina M. Stepien
    • 1
    Email author
  • Su Han Lum
    • 2
  • J. Edmond Wraith
    • 3
  • Christian J. Hendriksz
    • 1
    • 5
  • Heather J. Church
    • 3
  • David Priestman
    • 4
  • Frances M. Platt
    • 4
  • Simon Jones
    • 3
  • Ana Jovanovic
    • 1
  • Robert Wynn
    • 2
  1. 1.The Mark Holland Metabolic Unit, Adult Inherited Metabolic DisordersSalford Royal NHS Foundation TrustSalfordUK
  2. 2.Department of Paediatric Blood and Marrow TransplantRoyal Manchester Children’s HospitalManchesterUK
  3. 3.Willink Biochemical Genetics DepartmentSt. Mary’s HospitalManchesterUK
  4. 4.Department of PharmacologyUniversity of OxfordOxfordUK
  5. 5.Steve Biko Academic Unit, Paediatrics and Child HealthUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations