Advertisement

An Unexplained Congenital Disorder of Glycosylation-II in a Child with Neurohepatic Involvement, Hypercholesterolemia and Hypoceruloplasminemia

  • Pier Luigi Calvo
  • Marco Spada
  • Ivana Rabbone
  • Michele Pinon
  • Francesco Porta
  • Fabio Cisarò
  • Stefania Reggiani
  • Angelo B. Cefalù
  • Luisella Sturiale
  • Domenico Garozzo
  • Dirk J. Lefeber
  • Jaak Jaeken
Research Report
Part of the JIMD Reports book series (JIMD, volume 38)

Abstract

We report on a 12-year-old adopted boy with psychomotor disability, absence seizures, and normal brain MRI. He showed increased (but initially, at 5 months, normal) serum cholesterol, increased alkaline phosphatases, transiently increased transaminases and hypoceruloplasminemia with normal serum and urinary copper. Blood levels of immunoglobulins, haptoglobin, antithrombin, and factor XI were normal. A type 2 serum transferrin isoelectrofocusing and hypoglycosylation of apoCIII pointed to a combined N- and O-glycosylation defect. Neither CDG panel analysis with 79 CDG-related genes, nor whole exome sequencing revealed the cause of this CDG. Whole genome sequencing was not performed since the biological parents of this adopted child were not available.

Keywords

CDG-II Hypercholesterolemia Hypoceruloplasminemia Neurohepatic involvement 

Abbreviations

ALP

Alkaline phosphatase

apoCIII

Apolipoprotein CIII

AST, ALT

Serum transaminases

CDG

Congenital disorders of glycosylation

CK

Creatine kinase

GGT

Gamma glutamyltransferase

IEF

Isoelectrofocusing

MALDI-TOF

Matrix-assisted laser desorption/ionization-time of flight

Tf

Serum transferrin

Notes

Acknowledgements

The authors wish to thank Mrs. Barbara Wade for her linguistic advice.

References

  1. Calvo PL, Pagliardini S, Baldi M et al (2008) Long-standing mild hypertransaminasaemia caused by congenital disorder of glycosylation (CDG) type IIx. J Inherit Metab Dis 31(Suppl 2):S437–S440CrossRefPubMedGoogle Scholar
  2. Harrison H, Miller K (1992) Multiple serum protein abnormalities in carbohydrate-deficient glycoprotein syndrome: pathognomonic finding of two-dimensional electrophoresis. Clin Chem 38:1390–1392PubMedGoogle Scholar
  3. Henri H, Tissot JD, Messerli B et al (1997) Microheterogeneity of serum glycoproteins and their liver precursors in patients with carbohydrate-deficient glycoprotein syndrome type I: apparent deficiencies in clusterin and serum amyloid P. J Lab Clin Med 129:412–421CrossRefGoogle Scholar
  4. Heywood WE, Bliss E, Mills P et al (2016) Global serum glycoform profiling for the investigation of dystroglycanopathies § congenital disorders of glycosylation. Mol Genet Metab Rep 7:55–62CrossRefPubMedPubMedCentralGoogle Scholar
  5. Jaeken J, Morava E (2016) Congenital disorders of glycosylation, dolichol and glycosylphosphatidylinositol metabolism. In: Saudubray JM, van den Berghe G, Walter JH (eds) Inborn metabolic diseases – diagnosis and treatment, 6th edn. Springer, BerlinGoogle Scholar
  6. Jaeken J, van Eijk HG, van der Heul C et al (1984) Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clin Chim Acta 144:245–247CrossRefPubMedGoogle Scholar
  7. Jansen JC, Cirak S, van Scherpenzeel M et al (2016a) CCDC115 deficiency causes a disorder of Golgi homeostasis with abnormal protein glycosylation. Am J Hum Genet 98:310–321CrossRefPubMedPubMedCentralGoogle Scholar
  8. Jansen JC, Timal S, van Scherpenzeel M et al (2016b) TMEM199 deficiency is a disorder of Golgi homeostasis characterized by elevated transaminases, alkaline phosphatase, and cholesterol and abnormal glycosylation. Am J Hum Genet 98:322–330CrossRefPubMedPubMedCentralGoogle Scholar
  9. Jansen EJR, Timal S, Ryan M et al (2016c) ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nat Commun 7:11600. doi: 10.1038/ncomms11600 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Mandato C, Brive L, Miura Y et al (2006) Cryptogenic liver disease in four children: a novel congenital disorder of glycosylation. Pediatr Res 59:293–298CrossRefPubMedGoogle Scholar
  11. Matthijs G, Rymen D, Millón MB et al (2013) Approaches to homozygosity mapping and exome sequencing for the identification of novel types of CDG. Glycoconj J 30:67–76CrossRefPubMedGoogle Scholar
  12. Stibler H, Jaeken J, Kristiansson B (1991) Biochemical characteristics and diagnosis of the carbohydrate-deficient glycoprotein syndrome. Acta Paediatr Scand Suppl 375:21–31CrossRefGoogle Scholar
  13. Tegtmeyer LC, Rust S, van Scherpenzeel M et al (2014) Multiple phenotypes in phosphoglucomutase 1 deficiency. N Engl J Med 370:533–542CrossRefPubMedPubMedCentralGoogle Scholar
  14. Weinstein M, Schollen E, Matthijs G et al (2005) CDG-IL: an infant with a novel mutation in the ALG9 gene and additional phenotypic features. Am J Hum Genet 136A:194–197Google Scholar
  15. Wolfe LA, Krasnewich D (2013) Congenital disorders of glycosylation and intellectual disability. Dev Disabil Res Rev 17:211–225CrossRefPubMedGoogle Scholar
  16. Wopereis S, Grünewald S, Morava E et al (2003) Apolipoprotein C-III isofocusing in the diagnosis of genetic defects in O-glycan biosynthesis. Clin Chem 49:1839–1845CrossRefPubMedGoogle Scholar

Copyright information

© SSIEM and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Pier Luigi Calvo
    • 1
  • Marco Spada
    • 2
  • Ivana Rabbone
    • 2
  • Michele Pinon
    • 1
  • Francesco Porta
    • 2
  • Fabio Cisarò
    • 1
  • Stefania Reggiani
    • 1
  • Angelo B. Cefalù
    • 3
  • Luisella Sturiale
    • 4
  • Domenico Garozzo
    • 4
  • Dirk J. Lefeber
    • 5
  • Jaak Jaeken
    • 6
  1. 1.Pediatric Gastroenterology Unit, Department of Pediatrics, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza di TorinoUniversity of TorinoTorinoItaly
  2. 2.Department of PediatricsAzienda Ospedaliera-Universitaria Città della Salute e della Scienza di Torino, University of TorinoTorinoItaly
  3. 3.Department of Biomedicine, Internal Medicine and Medical Specialties (DIBIMIS)University of PalermoPalermoItaly
  4. 4.CNR Institute for Polymers Composites and BiomaterialsCataniaItaly
  5. 5.Translational Metabolic Laboratory, Department of NeurologyRadboudumcNijmegenThe Netherlands
  6. 6.Department of Development and Regeneration, Centre for Metabolic DiseaseUniversity Hospital Gasthuisberg, KU LeuvenLeuvenBelgium

Personalised recommendations