Skip to main content

Hyperphenylalaninemia Correlated with Global Decrease of Antioxidant Genes Expression in White Blood Cells of Adult Patients with Phenylketonuria

  • Research Report
  • Chapter
  • First Online:

Part of the book series: JIMD Reports ((JIMD,volume 37))

Abstract

Background: Several studies have highlighted disturbance of redox homeostasis in patients with phenylketonuria (PKU) which may be associated with neurological disorders observed in patients, especially during adulthood when phenylalanine restrictive diets are not maintained. The aim of this study was to assess the antioxidant profile in a cohort of PKU patients in comparison to the controls and to evaluate its relation to biochemical parameters especially phenylalaninemia.

Methods: We measured RNA expression of 22 antioxidant genes and reactive oxygen species (ROS) levels in white blood cells of 10 PKU patients and 10 age- and gender-matched controls. We also assessed plasma amino acids, vitamins, oligo-elements, and urinary organic acids concentrations. Then we evaluated the relationship between redox status and biochemical parameters.

Results: In addition to expected biochemical disturbances, we highlighted a significant global decrease of antioxidant genes expression in PKU patients in comparison to the controls. This global decrease of antioxidant genes expression, including various isoforms of peroxiredoxins, glutaredoxins, glutathione peroxidases, and superoxide dismutases, was significantly correlated to hyperphenylalaninemia.

Conclusion: This study is the first to evaluate the expression of 22 antioxidant genes in white blood cells regarding biochemical parameters in PKU. These findings highlight the association of hyperphenylalaninemia with antioxidant genes expression. New experiments to specify the role of oxidative stress in PKU pathogenesis may be useful in suggesting new recommendations in PKU management and new therapeutic trials based on antioxidant defenses.

The authors “Olivier Herault” and “François Maillot” contributed equally.

This is a preview of subscription content, log in via an institution.

Abbreviations

BMI:

Body mass index

CAT:

Catalase

Ct:

Cycle threshold

GLRX:

Glutaredoxin

GPX:

Glutathione peroxidase

GSR:

Glutathione-disulfide reductase

Phe:

Phenylalanine

PKU:

Phenylketonuria

PRDX:

Peroxiredoxin

ROS:

Reactive oxygen species

RQ:

Relative quantification

SOD:

Superoxide dismutase

TXN:

Thioredoxin

References

  • Andersen A, Avins EL (1976) Lowering brain phenylalanine levels by giving other large neutral amino acids. A new experimental therapeutic approach to phenylketonuria. Arch Neurol 33(10):684–686

    Article  CAS  PubMed  Google Scholar 

  • Antonozzi I, Carducci C, Vestri L, Manzari V, Dominici R (1987) Plasma amino acid values and pancreatic beta-cell function in phenylketonuria. J Inherit Metab Dis 10(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Artuch R, Colome C, Sierra C et al (2004) A longitudinal study of antioxidant status in phenylketonuric patients. Clin Biochem 37(3):198–203

    Article  CAS  PubMed  Google Scholar 

  • Barschak AG, Sitta A, Deon M et al (2006) Evidence that oxidative stress is increased in plasma from patients with maple syrup urine disease. Metab Brain Dis 21(4):279–286

    Article  CAS  PubMed  Google Scholar 

  • Belanger-Quintana A, Martinez-Pardo M (2011) Physical development in patients with phenylketonuria on dietary treatment: a retrospective study. Mol Genet Metab 104(4):480–484

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125(1–2):279–284

    Article  CAS  PubMed  Google Scholar 

  • Bilder DA, Burton BK, Coon H et al (2013) Psychiatric symptoms in adults with phenylketonuria. Mol Genet Metab 108(3):155–160

    Article  CAS  PubMed  Google Scholar 

  • Bird S, Miller NJ, Collins JE, Rice-Evans CA (1995) Plasma antioxidant capacity in two cases of tyrosinaemia type 1: one case treated with NTBC. J Inherit Metab Dis 18(2):123–126

    Article  CAS  PubMed  Google Scholar 

  • Bone A, Kuehl AK, Angelino AF (2012) A neuropsychiatric perspective of phenylketonuria I: overview of phenylketonuria and its neuropsychiatric sequelae. Psychosomatics 53(6):517–523

    Article  CAS  PubMed  Google Scholar 

  • Burrage LC, McConnell J, Haesler R et al (2012) High prevalence of overweight and obesity in females with phenylketonuria. Mol Genet Metab 107(1–2):43–48

    Article  CAS  PubMed  Google Scholar 

  • Chiarla C, Giovannini I, Siegel JH (2011) Characterization of alpha-amino-n-butyric acid correlations in sepsis. Transl Res 158(6):328–333

    Article  CAS  PubMed  Google Scholar 

  • de Baulny HO, Abadie V, Feillet F, de Parscau L (2007) Management of phenylketonuria and hyperphenylalaninemia. J Nutr 137(6 Suppl 1):1561S–1563S. Discussion 1573S–1575S

    PubMed  Google Scholar 

  • de Groot MJ, Hoeksma M, Reijngoud DJ et al (2013) Phenylketonuria: reduced tyrosine brain influx relates to reduced cerebral protein synthesis. Orphanet J Rare Dis 8:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Demirkol M, Gizewska M, Giovannini M, Walter J (2011) Follow up of phenylketonuria patients. Mol Genet Metab 104(Suppl):S31–S39

    Article  CAS  PubMed  Google Scholar 

  • Deon M, Sitta A, Faverzani JL et al (2015) Urinary biomarkers of oxidative stress and plasmatic inflammatory profile in phenylketonuric treated patients. Int J Dev Neurosci 47(Pt B):259–265

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos Mello M, Ribas GS, Wayhs CA et al (2015) Increased oxidative stress in patients with 3-hydroxy-3-methylglutaric aciduria. Mol Cell Biochem 402(1–2):149–155

    Article  CAS  PubMed  Google Scholar 

  • Ercal N, Aykin-Burns N, Gurer-Orhan H, McDonald JD (2002) Oxidative stress in a phenylketonuria animal model. Free Radic Biol Med 32(9):906–911

    Article  CAS  PubMed  Google Scholar 

  • Fernandes CG, Leipnitz G, Seminotti B et al (2010) Experimental evidence that phenylalanine provokes oxidative stress in hippocampus and cerebral cortex of developing rats. Cell Mol Neurobiol 30(2):317–326

    Article  CAS  PubMed  Google Scholar 

  • Groselj U, Tansek MZ, Battelino T (2014) Fifty years of phenylketonuria newborn screening – a great success for many, but what about the rest? Mol Genet Metab 113(1–2):8–10

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658

    Article  CAS  PubMed  Google Scholar 

  • Hanley WB (2013) Optimal serum phenylalanine for adult patients with phenylketonuria (PKU). Mol Genet Metab 110(3):199–200

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves IP (2007) Coenzyme Q10 in phenylketonuria and mevalonic aciduria. Mitochondrion 7(Suppl):S175–S180

    Article  CAS  PubMed  Google Scholar 

  • Herault O, Hope KJ, Deneault E et al (2012) A role for GPx3 in activity of normal and leukemia stem cells. J Exp Med 209(5):895–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9(7):811–818

    Article  CAS  PubMed  Google Scholar 

  • Krause W, Halminski M, McDonald L et al (1985) Biochemical and neuropsychological effects of elevated plasma phenylalanine in patients with treated phenylketonuria. A model for the study of phenylalanine and brain function in man. J Clin Invest 75(1):40–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matalon R, Surendran S, Matalon KM et al (2003) Future role of large neutral amino acids in transport of phenylalanine into the brain. Pediatrics 112(6 Pt 2):1570–1574

    PubMed  Google Scholar 

  • Mazzola PN, Terra M, Rosa AP et al (2011) Regular exercise prevents oxidative stress in the brain of hyperphenylalaninemic rats. Metab Brain Dis 26(4):291–297

    Article  CAS  PubMed  Google Scholar 

  • Mazzola PN, Karikas GA, Schulpis KH, Dutra-Filho CS (2013) Antioxidant treatment strategies for hyperphenylalaninemia. Metab Brain Dis 28(4):541–550

    Article  CAS  PubMed  Google Scholar 

  • Mazzola PN, Bruinenberg V, Anjema K et al (2016) Voluntary exercise prevents oxidative stress in the brain of phenylketonuria mice. JIMD Rep 27:69–77

    Article  PubMed  Google Scholar 

  • Menzel H, Steiner G, Lombeck I, Ohnesorge FK (1983) Glutathione peroxidase and glutathione S-transferase activity of platelets. Eur J Pediatr 140(3):244–247

    Article  CAS  PubMed  Google Scholar 

  • Moraes TB, Dalazen GR, Jacques CE, de Freitas RS, Rosa AP, Dutra-Filho CS (2014) Glutathione metabolism enzymes in brain and liver of hyperphenylalaninemic rats and the effect of lipoic acid treatment. Metab Brain Dis 29(3):609–615

    CAS  PubMed  Google Scholar 

  • Mutze U, Thiele AG, Baerwald C, Ceglarek U, Kiess W, Beblo S (2016) Ten years of specialized adult care for phenylketonuria – a single-centre experience. Orphanet J Rare Dis 11:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Okano Y, Nagasaka H (2013) Optimal serum phenylalanine for adult patients with phenylketonuria. Mol Genet Metab 110(4):424–430

    Article  CAS  PubMed  Google Scholar 

  • Preissler T, Bristot IJ, Costa BM et al (2016) Phenylalanine induces oxidative stress and decreases the viability of rat astrocytes: possible relevance for the pathophysiology of neurodegeneration in phenylketonuria. Metab Brain Dis 31(3):529–537

    Article  CAS  PubMed  Google Scholar 

  • Reilly C, Barrett JE, Patterson CM, Tinggi U, Latham SL, Marrinan A (1990) Trace element nutrition status and dietary intake of children with phenylketonuria. Am J Clin Nutr 52(1):159–165

    CAS  PubMed  Google Scholar 

  • Robertson LV, McStravick N, Ripley S et al (2013) Body mass index in adult patients with diet-treated phenylketonuria. J Hum Nutr Diet 26(Suppl 1):1–6

    Article  PubMed  Google Scholar 

  • Rocha JC, van Spronsen FJ, Almeida MF et al (2012) Dietary treatment in phenylketonuria does not lead to increased risk of obesity or metabolic syndrome. Mol Genet Metab 107(4):659–663

    Article  CAS  PubMed  Google Scholar 

  • Sanayama Y, Nagasaka H, Takayanagi M et al (2011) Experimental evidence that phenylalanine is strongly associated to oxidative stress in adolescents and adults with phenylketonuria. Mol Genet Metab 103(3):220–225

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TDK, Livak J (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Schuck PF, Malgarin F, Cararo JH, Cardoso F, Streck EL, Ferreira GC (2015) Phenylketonuria pathophysiology: on the role of metabolic alterations. Aging Dis 6(5):390–399

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharman R, Sullivan K, Young RM, McGill J (2012) Depressive symptoms in adolescents with early and continuously treated phenylketonuria: associations with phenylalanine and tyrosine levels. Gene 504(2):288–291

    Article  CAS  PubMed  Google Scholar 

  • Sierra C, Vilaseca MA, Moyano D et al (1998) Antioxidant status in hyperphenylalaninemia. Clin Chim Acta 276(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Sirtori LR, Dutra-Filho CS, Fitarelli D et al (2005) Oxidative stress in patients with phenylketonuria. Biochim Biophys Acta 1740(1):68–73

    Article  CAS  PubMed  Google Scholar 

  • Sitta A, Barschak AG, Deon M et al (2006) Investigation of oxidative stress parameters in treated phenylketonuric patients. Metab Brain Dis 21(4):287–296

    Article  CAS  PubMed  Google Scholar 

  • Sitta A, Manfredini V, Biasi L et al (2009) Evidence that DNA damage is associated to phenylalanine blood levels in leukocytes from phenylketonuric patients. Mutat Res 679(1–2):13–16

    Article  CAS  PubMed  Google Scholar 

  • Sitta A, Vanzin CS, Biancini GB et al (2011) Evidence that L-carnitine and selenium supplementation reduces oxidative stress in phenylketonuric patients. Cell Mol Neurobiol 31(3):429–436

    Article  CAS  PubMed  Google Scholar 

  • Streck EL, Vieira PS, Wannmacher CM, Dutra-Filho CS, Wajner M, Wyse AT (2003) In vitro effect of homocysteine on some parameters of oxidative stress in rat hippocampus. Metab Brain Dis 18(2):147–154

    Article  CAS  PubMed  Google Scholar 

  • Tavana S, Amini S, Hakhamaneshi MS et al (2016) Prooxidant-antioxidant balance in patients with phenylketonuria and its correlation to biochemical and hematological parameters. J Pediatr Endocrinol Metab 29:675–680

    Article  CAS  PubMed  Google Scholar 

  • ten Hoedt AE, de Sonneville LM, Francois B et al (2011) High phenylalanine levels directly affect mood and sustained attention in adults with phenylketonuria: a randomised, double-blind, placebo-controlled, crossover trial. J Inherit Metab Dis 34(1):165–171

    Article  CAS  PubMed  Google Scholar 

  • Trefz F, Maillot F, Motzfeldt K, Schwarz M (2011) Adult phenylketonuria outcome and management. Mol Genet Metab 104(Suppl):S26–S30

    Article  CAS  PubMed  Google Scholar 

  • van Vliet D, Bruinenberg VM, Mazzola PN et al (2016) Therapeutic brain modulation with targeted large neutral amino acid supplements in the Pah-enu2 phenylketonuria mouse model. Am J Clin Nutr 104(5):1292–1300

    Article  PubMed  Google Scholar 

  • Vanzin CS, Biancini GB, Sitta A et al (2011) Experimental evidence of oxidative stress in plasma of homocystinuric patients: a possible role for homocysteine. Mol Genet Metab 104(1–2):112–117

    Article  CAS  PubMed  Google Scholar 

  • Waisbren SE, Noel K, Fahrbach K et al (2007) Phenylalanine blood levels and clinical outcomes in phenylketonuria: a systematic literature review and meta-analysis. Mol Genet Metab 92(1–2):63–70

    Article  CAS  PubMed  Google Scholar 

  • Wajner M, Latini A, Wyse AT, Dutra-Filho CS (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27(4):427–448

    Article  CAS  PubMed  Google Scholar 

  • Weglage J, Fromm J, van Teeffelen-Heithoff A et al (2013) Neurocognitive functioning in adults with phenylketonuria: results of a long term study. Mol Genet Metab 110(Suppl):S44–S48

    Article  CAS  PubMed  Google Scholar 

  • Xiong X, Sheng X, Liu D, Zeng T, Peng Y, Wang Y (2015) A GC/MS-based metabolomic approach for reliable diagnosis of phenylketonuria. Anal Bioanal Chem 407(29):8825–8833

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the SFEIM (Société Française des Erreurs Innées du Métabolisme) for its support. We also thank Penelope HODGES for her participation in PKU patients’ recruitment and for the English proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Veyrat-Durebex .

Editor information

Editors and Affiliations

Additional information

Communicated by: Nenad Blau, PhD

Take-Home Message (Synopsis)

This preliminary study highlights a lower antioxidant arsenal in leukocytes associated with hyperphenylalaninemia using assessment of gene expression of 22 major antioxidant enzymes in adult PKU patients.

Conflict of Interest

All authors declare that they have no conflicts of interest with the contents of this chapter.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study. Proof that informed consent was obtained are available upon request.

Author Contributions

C.V-D designed and performed experiments, analyzed data, and wrote the manuscript; C.D performed and supervised redox status experiments and gave technical and intellectual support on redox study; H.B designed experiments, supervised the writing of the manuscript, and gave intellectual support and conceptual advice; F.P performed experiments; H.H collected clinical data; P.E supervised biochemical parameters assays; C.A performed biochemical experiments; V.G recruited healthy controls and participated in the design of study; O.H gave technical and intellectual support on redox status interpretation and supervised the writing of the manuscript; F.M designed and supervised the study, recruited PKU patients, and supervised the writing of the manuscript. All authors provided conceptual advices and comments on the manuscript.

Author who serves as guarantor: François Maillot.

Details of Funding

This study was funded by a research grant from the University Hospital of Tours. The authors confirm independence from the sponsors; the content of the chapter has not been influenced by the sponsors.

Details of Ethics Approval

This study was approved by the ethics committee of University Hospital of Tours (CPPRB, for Comité de Protection des Personnes) and registered on ClinicalTrials.gov (study ID number PHAO14/FM-StressOX-PCU, “Antioxidant Signature in Adults Patients with Phenlyketonuria”). Informed consent was signed by all patients and controls prior to inclusion.

Supplementary Material

Fig. S1

Profile of expression of antioxidant genes of different subcategories of PKU patients compared to healthy controls (fold change ratio of gene expression in PKU patients compared to controls). This graph represented antioxidant profile of 3 particular patients (curves represent expression of the 26 studied transcripts in patient compared to their matched controls): a patient receiving BH4 treatment (excluded from statistical analysis, red curve), a patient with permanent moderate hyperphenylalaninemia (yellow curve), and a patient with atypical PKU (green curve). Antioxidant profiles of these 3 patients were presented in comparison to the mean antioxidant profile of 7 typical PKU patients (black curve). RNA isolated from white blood cells of PKU patients and controls was reverse transcribed, and a real-time PCR using a custom panel was performed on cDNA in order to assess the expression of main antioxidant genes. Results of real-time PCR assays are presented as fold change of genes expression in white blood cells of PKU patients compared to controls. Genes of the antioxidant profile are presented in order from most to least expressed in X-axis, according to their ΔCt values (versus mean references) (JPEG 99 kb)

Table S1

Patients’ characteristics (DOCX 16 kb)

Table S2

Comparison of biochemical parameters concentrations in plasma of PKU patients and controls (DOCX 17 kb)

Table S3

Comparison of urinary concentrations of organic acids of PKU patients and controls. Levels of urinary concentrations of organic acids are given in arbitrary unit of peak area in chromatogram, reported to area peak of internal standard and reported to urinary concentration of creatinine (DOCX 18 kb)

Supplementary Methods (DOCX 15 kb)

Supplementary Data (XLSX 26 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 SSIEM and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Veyrat-Durebex, C. et al. (2017). Hyperphenylalaninemia Correlated with Global Decrease of Antioxidant Genes Expression in White Blood Cells of Adult Patients with Phenylketonuria. In: Morava, E., Baumgartner, M., Patterson, M., Rahman, S., Zschocke, J., Peters, V. (eds) JIMD Reports, Volume 37. JIMD Reports, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8904_2017_16

Download citation

  • DOI: https://doi.org/10.1007/8904_2017_16

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56358-8

  • Online ISBN: 978-3-662-56359-5

  • eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)

Publish with us

Policies and ethics