Skip to main content

Widespread Expression of a Membrane-Tethered Version of the Soluble Lysosomal Enzyme Palmitoyl Protein Thioesterase-1

  • Research Report
  • Chapter
  • First Online:

Part of the book series: JIMD Reports ((JIMD,volume 36))

Abstract

“Cross-correction,” the transfer of soluble lysosomal enzymes between neighboring cells, forms the foundation for therapeutics of lysosomal storage disorders (LSDs). However, “cross-correction” poses a significant barrier to studying the role of specific cell types in LSD pathogenesis. By expressing the native enzyme in only one cell type, neighboring cell types are invariably corrected. In this study, we present a strategy to limit “cross-correction” of palmitoyl-protein thioesterase-1(PPT1), a lysosomal hydrolase deficient in Infantile Neuronal Ceroid Lipofuscinosis (INCL, Infantile Batten disease) to the lysosomal membrane via the C-terminus of lysosomal associated membrane protein-1 (LAMP1). Tethering PPT1 to the lysosomal membrane prevented “cross-correction” while allowing PPT1 to retain its enzymatic function and localization in vitro. A transgenic line harboring the lysosomal membrane-tethered PPT1 was then generated. We show that expression of lysosome-restricted PPT1 in vivo largely rescues the INCL biochemical, histological, and functional phenotype. These data suggest that lysosomal tethering of PPT1 via the C-terminus of LAMP1 is a viable strategy and that this general approach can be used to study the role of specific cell types in INCL pathogenesis, as well as other LSDs. Ultimately, understanding the role of specific cell types in the disease progression of LSDs will help guide the development of more targeted therapeutics.

One Sentence Synopsis: Tethering PPT1 to the lysosomal membrane is a viable strategy to prevent “cross-correction” and will allow for the study of specific cellular contributions in INCL pathogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Benitez BA, Cairns NJ, Schmidt RE et al (2015) Clinically early-stage CSPalpha mutation carrier exhibits remarkable terminal stage neuronal pathology with minimal evidence of synaptic loss. Acta Neuropathol Commun 3:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Bible E, Gupta P, Hofmann SL, Cooper JD (2004) Regional and cellular neuropathology in the palmitoyl protein thioesterase-1 null mutant mouse model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 16:346–359

    Article  CAS  PubMed  Google Scholar 

  • Bill CA, Nickoloff JA (2001) Spontaneous and ultraviolet light-induced direct repeat recombination in mammalian cells frequently results in repeat deletion. Mutat Res 487:41–50

    Article  CAS  PubMed  Google Scholar 

  • Dahms NM, Lobel P, Kornfeld S (1989) Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem 264:12115–12118

    CAS  PubMed  Google Scholar 

  • Dearborn JT, Harmon SK, Fowler SC et al (2015) Comprehensive functional characterization of murine infantile Batten disease including Parkinson-like behavior and dopaminergic markers. Sci Rep 5:12752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffey M, Bible E, Vogler C et al (2004) Adeno-associated virus 2-mediated gene therapy decreases autofluorescent storage material and increases brain mass in a murine model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 16:360–369

    Article  CAS  PubMed  Google Scholar 

  • Griffey M, Macauley SL, Ogilvie JM, Sands MS (2005) AAV2-mediated ocular gene therapy for infantile neuronal ceroid lipofuscinosis. Mol Ther 12:413–421

    Article  CAS  PubMed  Google Scholar 

  • Guarnieri FG, Arterburn LM, Penno MB, Cha Y, August JT (1993) The motif Tyr-X-X-hydrophobic residue mediates lysosomal membrane targeting of lysosome-associated membrane protein 1. J Biol Chem 268:1941–1946

    CAS  PubMed  Google Scholar 

  • Gupta P, Soyombo AA, Atashband A et al (2001) Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice. Proc Natl Acad Sci U S A 98:13566–13571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haltia M, Rapola J, Santavuori P, Keranen A (1973) Infantile type of so-called neuronal ceroid-lipofuscinosis. 2. Morphological and biochemical studies. J Neurol Sci 18:269–285

    Article  CAS  PubMed  Google Scholar 

  • Haruyama N, Cho A, Kulkarni AB (2009) Overview: engineering transgenic constructs and mice. Curr Protoc Cell Biol. Chapter 19: Unit 19.10.

    Google Scholar 

  • Hendricks CA, Almeida KH, Stitt MS et al (2003) Spontaneous mitotic homologous recombination at an enhanced yellow fluorescent protein (EYFP) cDNA direct repeat in transgenic mice. Proc Natl Acad Sci U S A 100:6325–6330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi M, Keith Pittman H, Haisch C, Verbanac K (2008) Real-time PCR to determine transgene copy number and to quantitate the biolocalization of adoptively transferred cells from EGFP-transgenic mice. BioTechniques 45:247–258

    Article  CAS  PubMed  Google Scholar 

  • Khaibullina A, Kenyon N, Guptill V et al (2012) In a model of Batten disease, palmitoyl protein thioesterase-1 deficiency is associated with brown adipose tissue and thermoregulation abnormalities. PLoS One 7:e48733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kielar C, Maddox L, Bible E et al (2007) Successive neuron loss in the thalamus and cortex in a mouse model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis 25:150–162

    Article  CAS  PubMed  Google Scholar 

  • Macauley SL, Wozniak DF, Kielar C, Tan Y, Cooper JD, Sands MS (2009) Cerebellar pathology and motor deficits in the palmitoyl protein thioesterase 1-deficient mouse. Exp Neurol 217:124–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macauley SL, Pekny M, Sands MS (2011) The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis. J Neurosci 31:15575–15585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marathe S, Miranda SR, Devlin C et al (2000) Creation of a mouse model for non-neurological (type B) Niemann-Pick disease by stable, low level expression of lysosomal sphingomyelinase in the absence of secretory sphingomyelinase: relationship between brain intra-lysosomal enzyme activity and central nervous system function. Hum Mol Genet 9:1967–1976

    Article  CAS  PubMed  Google Scholar 

  • Neufeld EF (1980) The uptake of enzymes into lysosomes: an overview. Birth Defects Orig Artic Ser 16:77–84

    CAS  PubMed  Google Scholar 

  • Neufeld EF, Fratantoni JC (1970) Inborn errors of mucopolysaccharide metabolism. Science 169:141–146

    Article  CAS  PubMed  Google Scholar 

  • Neufeld EF, Sando GN, Garvin AJ, Rome LH (1977) The transport of lysosomal enzymes. J Supramol Struct 6:95–101

    Article  CAS  PubMed  Google Scholar 

  • Roberts MS, Macauley SL, Wong AM et al (2012) Combination small molecule PPT1 mimetic and CNS-directed gene therapy as a treatment for infantile neuronal ceroid lipofuscinosis. J Inherit Metab Dis 35:847–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohrer J, Schweizer A, Russell D, Kornfeld S (1996) The targeting of Lamp1 to lysosomes is dependent on the spacing of its cytoplasmic tail tyrosine sorting motif relative to the membrane. J Cell Biol 132:565–576

    Article  CAS  PubMed  Google Scholar 

  • Sands MS, Davidson BL (2006) Gene therapy for lysosomal storage diseases. Mol Ther 13:839–849

    Article  CAS  PubMed  Google Scholar 

  • Santavuori P, Haltia M, Rapola J, Raitta C (1973) Infantile type of so-called neuronal ceroid-lipofuscinosis. 1. A clinical study of 15 patients. J Neurol Sci 18:257–267

    Article  CAS  PubMed  Google Scholar 

  • Tikka S, Monogioudi E, Gotsopoulos A et al (2016) Proteomic profiling in the brain of CLN1 disease model reveals affected functional modules. Neruomol Med 18:109–133

    Article  CAS  Google Scholar 

  • Verkruyse LA, Hofmann SL (1996) Lysosomal targeting of palmitoyl-protein thioesterase. J Biol Chem 271:15831–15836

    Article  CAS  PubMed  Google Scholar 

  • Vesa J, Hellsten E, Verkruyse LA et al (1995) Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature 376:584–587

    Article  CAS  PubMed  Google Scholar 

  • Woloszynek JC, Coleman T, Semenkovich CF, Sands MS (2007) Lysosomal dysfunction results in altered energy balance. J Biol Chem 282:35765–35771

    Article  CAS  PubMed  Google Scholar 

  • Wurtele H, Gusew N, Lussier R, Chartrand P (2005) Characterization of in vivo recombination activities in the mouse embryo. Mol Genet Genomics 273:252–263

    Article  PubMed  Google Scholar 

  • Zufferey R, Dull T, Mandel RJ et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank J. Michael White (Transgenic Knockout Micro-Injection Core, WUSTL) for his help with generating the transgenic founders. We thank Dr. Anne Hennig (Vision Research Core, WUSTL) for her help with the electroretinography. In addition, we thank Dr. Bruno Benitez for his advice and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Sands .

Editor information

Editors and Affiliations

Additional information

Communicated by: Michael J. Bennett, PhD

Appendices

Contributions

C.S. and M.S.S. wrote the paper. C.S., S.L.M., and M.S.S. designed research. C.S., S.L.M. and J.T.D. performed research. C.S. and J.T.D. analyzed the data. M.S.S. will serve as guarantor.

Compliance with Ethical Standards

  • Conflict of Interests: No conflicts of interest to report.

  • Animal Rights: IACUC approval #20130254.

Funding

This work was funded by a grant from the NIH NINDS 043205.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 SSIEM and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shyng, C., Macauley, S.L., Dearborn, J.T., Sands, M.S. (2017). Widespread Expression of a Membrane-Tethered Version of the Soluble Lysosomal Enzyme Palmitoyl Protein Thioesterase-1. In: Morava, E., Baumgartner, M., Patterson, M., Rahman, S., Zschocke, J., Peters, V. (eds) JIMD Reports, Volume 36. JIMD Reports, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8904_2017_1

Download citation

  • DOI: https://doi.org/10.1007/8904_2017_1

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56137-9

  • Online ISBN: 978-3-662-56138-6

  • eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)

Publish with us

Policies and ethics