Advertisement

A Founder Effect for the HGD G360R Mutation in Italy: Implications for a Regional Screening of Alkaptonuria

  • Berardino PorfirioEmail author
  • Roberta Sestini
  • Greta Gorelli
  • Miriam Cordovana
  • Alessandro Mannoni
  • Jeanette L. Usher
  • Wendy J. Introne
  • William A. Gahl
  • Thierry Vilboux
Research Report
Part of the JIMD Reports book series (JIMD, volume 30)

Abstract

We sought to establish rapid and specific genotyping methods for G360R mutation and for seven tightly linked markers in the homogentisate dioxygenase gene to address the question of whether G360R is a mutational hot spot or the result of a founder effect, as it has been repeatedly found in alkaptonuric patients from a geographic isolate in Italy.

For G360R and single nucleotide polymorphism genotyping, high-resolution melting analysis was performed. Microsatellites were analysed by multiplex PCR and capillary electrophoresis. To investigate the natural history of the G360R mutation, we genotyped markers in 52 controls and in 8 unrelated patients from the UK and USA, who also segregated the G360R mutation, and calculated its age using DMLE+2.3 software.

A distinct G360R-bearing haplotype was identified in all patients of Caucasian descent. Estimated mutation age was 545 generations (95% credible set, 402–854), suggesting that G360R arose in an ancestor who lived 8,000–10,000 years BC. Archaeological, historical and demographic data support that a G360R carrier has settled the remote valley where present-day population might have a heterozygote frequency of at least 6%.

Given the late health-threatening complications of alkaptonuria and a cure within reach, inhabitants of this isolate would benefit from screening and genetic counselling.

Keywords

Alkaptonuria Founder effect Genetic screening Mutation age Ochronosis 

Notes

Acknowledgements

The study was supported by a research grant (Ricerca d’Ateneo 2014) from the University of Florence, Italy, to BP.

Supplementary material

432718_1_En_534_MOESM1_ESM.zip (253 kb)
(ZIP 253 kb)

References

  1. Beltrán-Valero de Bernabé D, Granadino B, Chiarelli I et al (1998) Mutation and polymorphism analysis of the human homogentisate 1, 2-dioxygenase gene in alkaptonuria patients. Am J Hum Genet 62:776–784CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beltrán-Valero de Bernabé D, Jimenez FJ, Aquaron R, Rodríguez de Córdoba S (1999) Analysis of alkaptonuria (AKU) mutations and polymorphisms reveals that the CCC sequence motif is a mutational hot spot in the homogentisate 1,2 dioxygenase gene (HGO). Am J Hum Genet 64:1316–1322CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bonita R, Beaglehole R, Kjellström T (2006) Basic epidemiology, 2nd edn. World Health OrganizationGoogle Scholar
  4. Dondio W (1995) La regione atesina nella preistoria. RætiaGoogle Scholar
  5. Fernández-Cañón JM, Granadino B, Beltrán-Valero de Bernabé D et al (1996) The molecular basis of alkaptonuria. Nat Genet 14:19–24CrossRefPubMedGoogle Scholar
  6. Gallagher JA, Ranganath LR, Boyde A (2015) Lessons from rare diseases of cartilage and bone. Curr Opin Pharmacol 22:107–114CrossRefPubMedGoogle Scholar
  7. Granadino B, Beltrán-Valero de Bernabé D, Fernández-Cañón JM, Peñalva MA, Rodríguez de Córdoba S (1997) The human homogentisate 1,2-dioxygenase (HGO) gene. Genomics 43:115–122CrossRefPubMedGoogle Scholar
  8. Grasko JM, Hooper AJ, Brown JW, McKnight CJ, Burnett JR (2009) A novel missense HGD gene mutation, K57N, in a patient with alkaptonuria. Clin Chim Acta 403:254–256CrossRefPubMedGoogle Scholar
  9. Liew M, Pryor R, Palais R et al (2004) Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 50:1156–1164CrossRefPubMedGoogle Scholar
  10. Livi-Bacci M (2012) A concise history of world population, 5th edn. Wiley-BlackwellGoogle Scholar
  11. Mannoni A, Selvi E, Lorenzini S et al (2004) Alkaptonuria, ochronosis, and ochronotic arthropathy. Semin Arthritis Rheum 33:239–248CrossRefPubMedGoogle Scholar
  12. Mistry JB, Bukhari M, Taylor AM (2013) Alkaptonuria. Rare Dis 1:27475CrossRefGoogle Scholar
  13. Phornphutkul C, Introne WJ, Perry MB et al (2002) Natural history of alkaptonuria. N Engl J Med 347:2111–2121CrossRefPubMedGoogle Scholar
  14. Porfirio B, Chiarelli I, Graziano C et al (2000) Alkaptonuria in Italy: polymorphic haplotype background, mutational profile, and description of four novel mutations in the homogentisate 1,2-dioxygenase gene. J Med Genet 37:309–312CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ranganath LR, Timmis OG, Gallagher JA (2015) Progress in alkaptonuria –are we near to an effective therapy? J Inherit Metab Dis 38:787–789CrossRefPubMedGoogle Scholar
  16. Rannala B, Bertorelle G (2001) Using linked markers to infer the age of a mutation. Hum Mutat 18:87–100CrossRefPubMedGoogle Scholar
  17. Reeve JP, Rannala B (2002) DMLE+: Bayesian linkage disequilibrium gene mapping. Bioinformatics 18:894–895CrossRefPubMedGoogle Scholar
  18. Shriner D, Tekola-Ayele F, Adeyemo A, Rotimi CN (2014) Genome-wide genotype and sequence-based reconstruction of the 140,000 year history of modern human ancestry. Sci Rep 4:6055CrossRefPubMedPubMedCentralGoogle Scholar
  19. Slatkin M, Rannala B (2000) Estimating allele age. Annu Rev Genomics Hum Genet 1:225–249CrossRefPubMedGoogle Scholar
  20. Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing data imputation. Am J Hum Genet 76:449–462CrossRefPubMedPubMedCentralGoogle Scholar
  21. Suwannarat P, O’Brien K, Perry MB et al (2005) Use of nitisinone in patients with alkaptonuria. Metabolism 54:719–728CrossRefPubMedGoogle Scholar
  22. Usher JL, Ascher DB, Pires DE, Milan AM, Blundell TL, Ranganath LR (2015) Analysis of HGD gene mutations in patients with alkaptonuria from the United Kingdom: identification of novel mutations. JIMD Rep 24:3–11CrossRefPubMedPubMedCentralGoogle Scholar
  23. Valmikinathan K, Verghese N (1966) Simple colour reaction for alkaptonuria. J Clin Pathol 19:200CrossRefPubMedPubMedCentralGoogle Scholar
  24. Vilboux T, Kayser M, Introne W et al (2009) Mutation spectrum of homogentisic acid oxidase (HGD) in alkaptonuria. Hum Mutat 30:1611–1619CrossRefPubMedPubMedCentralGoogle Scholar
  25. Wittwer CT (2009) High-resolution DNA melting analysis: advancements and limitations. Hum Mutat 30:857–859CrossRefPubMedGoogle Scholar
  26. Zatkova A, Sedlackova T, Radvansky J et al (2012) Identification of eleven novel homogentisate 1,2 dioxygenase (HGD) variants in alkaptonuria (AKU) patients and establishment of a novel LOVD based HGD mutation database. JIMD Rep 4:55–65CrossRefPubMedGoogle Scholar

Copyright information

© SSIEM and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Berardino Porfirio
    • 1
    Email author
  • Roberta Sestini
    • 1
  • Greta Gorelli
    • 1
  • Miriam Cordovana
    • 1
  • Alessandro Mannoni
    • 2
  • Jeanette L. Usher
    • 3
  • Wendy J. Introne
    • 4
    • 5
  • William A. Gahl
    • 4
    • 5
    • 6
  • Thierry Vilboux
    • 4
    • 7
  1. 1.Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, Clinical Physiopathology UnitUniversity of FlorenceFlorenceItaly
  2. 2.Internal Medicine Division, Rheumatology UnitOspedali S. Maria Nuova e PalagiFlorenceItaly
  3. 3.Department of Clinical Biochemistry and Metabolic MedicineRoyal Liverpool and Broadgreen University Hospital TrustLiverpoolUK
  4. 4.Medical Genetics BranchNational Human Genome Research Institute, National Institutes of HealthBethesdaUSA
  5. 5.Office of the Clinical Director, National Human Genome Research Institute, National Institutes of HealthBethesdaUSA
  6. 6.NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of HealthBethesdaUSA
  7. 7.Division of Medical GenomicsInova Translational Medicine InstituteFalls ChurchUSA

Personalised recommendations