Advertisement

Pilot Experience with an External Quality Assurance Scheme for Acylcarnitines in Plasma/Serum

  • P. Ruiz Sala
  • G. Ruijter
  • C. Acquaviva
  • A. Chabli
  • M. G. M. de Sain-van der Velden
  • J. Garcia-Villoria
  • M. R. Heiner-Fokkema
  • E. Jeannesson-Thivisol
  • K. Leckstrom
  • L. Franzson
  • G. Lynes
  • J. Olesen
  • W. Onkenhout
  • P. Petrou
  • A. Drousiotou
  • A. Ribes
  • C. Vianey-Saban
  • B. MerineroEmail author
Research Report
Part of the JIMD Reports book series (JIMD, volume 30)

Abstract

The analysis of acylcarnitines (AC) in plasma/serum is established as a useful test for the biochemical diagnosis and the monitoring of treatment of organic acidurias and fatty acid oxidation defects. External quality assurance (EQA) for qualitative and quantitative AC is offered by ERNDIM and CDC in dried blood spots but not in plasma/serum samples. A pilot interlaboratory comparison between 14 European laboratories was performed over 3 years using serum/plasma samples from patients with an established diagnosis of an organic aciduria or fatty acid oxidation defect. Twenty-three different samples with a short clinical description were circulated. Participants were asked to specify the method used to analyze diagnostic AC, to give quantitative data for diagnostic AC with the corresponding reference values, possible diagnosis, and advice for further investigations.

Although the reference and pathological concentrations of AC varied among laboratories, elevated marker AC for propionic acidemia, isovaleric acidemia, medium-chain acyl-CoA dehydrogenase, very long-chain acyl-CoA dehydrogenase, and multiple acyl-CoA dehydrogenase deficiencies were correctly identified by all participants allowing the diagnosis of these diseases. Conversely, the increased concentrations of dicarboxylic AC were not always identified, and therefore the correct diagnosis was not reach by some participants, as exemplified in cases of malonic aciduria and 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. Misinterpretation occurred in those laboratories that used multiple-reaction monitoring acquisition mode, did not derivatize, or did not separate isomers. However, some of these laboratories suggested further analyses to clarify the diagnosis.

This pilot experience highlights the importance of an EQA scheme for AC in plasma.

Keywords

Acylcarnitines External quality assurance Fatty acid oxidation defects Organic acidurias 

Notes

Acknowledgments

We thank Mrs. A Sánchez for technical assistance in preparing the samples. We are grateful to the Scientific Advisory Board of ERNDIM for support and helpful discussions.

References

  1. Bohles H, Evangeliou A, Bervoets K, Eckert I, Sewell A (1994) Carnitine esters in metabolic disease. Eur J Pediatr 153:S57–S61CrossRefPubMedGoogle Scholar
  2. Bonham JR (2014) The organisation of training for laboratory scientists in inherited metabolic disease, newborn screening and paediatric clinical chemistry. Clin Biochem 47:763–764CrossRefPubMedGoogle Scholar
  3. Ferrer I, Ruiz-Sala P, Vicente Y, Merinero B, Perez-Cerda C, Ugarte M (2007) Separation and identification of plasma short-chain acylcarnitine isomers by HPLC/MS/MS for the differential diagnosis of fatty acid oxidation defects and organic acidemias. J Chromatogr B Analyt Technol Biomed Life Sci 860:121–126CrossRefPubMedGoogle Scholar
  4. Fowler B, Burlina A, Kozich V, Vianey-Saban C (2008) Quality of analytical performance in inherited metabolic disorders: the role of ERNDIM. J Inherit Metab Dis 31:680–689CrossRefPubMedGoogle Scholar
  5. Johnson DW (1999) Inaccurate measurement of free carnitine by the electrospray tandem mass spectrometry screening method for blood spots. J Inherit Metab Dis 22:201–202CrossRefPubMedGoogle Scholar
  6. McHugh D, Cameron CA, Abdenur JE, Abdulrahman M, Adair O, Al Nuaimi SA, Ahlman H, Allen JJ, Antonozzi I, Archer S, Au S, Auray-Blais C, Baker M, Bamforth F, Beckmann K, Pino GB, Berberich SL, Binard R, Boemer F, Bonham J, Breen NN, Bryant SC, Caggana M, Caldwell SG, Camilot M, Campbell C, Carducci C, Bryant SC, Caggana M, Caldwell SG, Camilot M, Campbell C, Carducci C, Cariappa R, Carlisle C, Caruso U, Cassanello M, Castilla AM, Ramos DE, Chakraborty P, Chandrasekar R, Ramos AC, Cheillan D, Chien YH, Childs TA, Chrastina P, Sica YC, de Juan JA, Colandre ME, Espinoza VC, Corso G, Currier R, Cyr D, Czuczy N, D’Apolito O, Davis T, de Sain-Van der Velden MG, Delgado Pecellin C, Di Gangi IM, Di Stefano CM, Dotsikas Y, Downing M, Downs SM, Dy B, Dymerski M, Rueda I, Elvers B, Eaton R, Eckerd BM, El Mougy F, Eroh S, Espada M, Evans C, Fawbush S, Fijolek KF, Fisher L, Franzson L, Frazier DM, Garcia LR, Bermejo MS, Gavrilov D, Gerace R, Giordano G, Irazabal YG, Greed LC, Grier R, Grycki E, Gu X, Gulamali-Majid F, Hagar AF, Han L, Hannon WH, Haslip C, Hassan FA, He M, Hietala A, Himstedt L, Hoffman GL, Hoffman W, Hoggatt P et al (2011) Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project. Genet Med 13:230–254CrossRefPubMedGoogle Scholar
  7. Millington DS, Kodo N, Norwood DL, Roe CR (1990) Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inherit Metab Dis 13:321–324CrossRefPubMedGoogle Scholar
  8. Sewell AC, Bohles HJ (1995) Acylcarnitines in intermediary metabolism. Eur J Pediatr 154:871–877CrossRefPubMedGoogle Scholar
  9. Vreken P, van Lint AE, Bootsma AH, Overmars H, Wanders RJ, van Gennip AH (1999) Quantitative plasma acylcarnitine analysis using electrospray tandem mass spectrometry for the diagnosis of organic acidaemias and fatty acid oxidation defects. J Inherit Metab Dis 22:302–306CrossRefPubMedGoogle Scholar

Copyright information

© SSIEM and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • P. Ruiz Sala
    • 1
  • G. Ruijter
    • 2
  • C. Acquaviva
    • 3
  • A. Chabli
    • 4
  • M. G. M. de Sain-van der Velden
    • 5
  • J. Garcia-Villoria
    • 6
  • M. R. Heiner-Fokkema
    • 7
  • E. Jeannesson-Thivisol
    • 8
  • K. Leckstrom
    • 9
  • L. Franzson
    • 10
  • G. Lynes
    • 11
  • J. Olesen
    • 12
  • W. Onkenhout
    • 13
  • P. Petrou
    • 14
  • A. Drousiotou
    • 14
  • A. Ribes
    • 6
  • C. Vianey-Saban
    • 3
  • B. Merinero
    • 1
    Email author
  1. 1.Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, IDIPAZ, CIBER de Enfermedades RarasMadridSpain
  2. 2.Department of Clinical GeneticsErasmus Medical CentreRotterdamThe Netherlands
  3. 3.Service Maladies Héréditaires du Métabolisme, Centre de Biologie et Pathologie EstLyonFrance
  4. 4.Biochimie métabolomique et protéomique, Hopital Necker Enfants MaladesParisFrance
  5. 5.Department of Medical GeneticsUniversity Medical Centre UtrechtUtrechtThe Netherlands
  6. 6.Department of Biochemistry and Molecular Genetics, Div Inborn Errors MetabHospital Clinic, IDIBAPS, CIBERERBarcelonaSpain
  7. 7.Department of Laboratory MedicineUniversity Medical Centre GroningenGroningenThe Netherlands
  8. 8.Service de Biochimie et Biologie Moléculaire, CHU de NancyVandoeuvre-NancyFrance
  9. 9.Department Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
  10. 10.Department of Genetics and Molecular MedicineLandspitaliReykjavikIceland
  11. 11.Neurometabolic UnitNational Hospital for Neurology and NeurosurgeryLondonUK
  12. 12.Department of Clinical GeneticsCopenhagen University HospitalCopenhagenDenmark
  13. 13.Department of Clinical Chemistry and Laboratory MedicineLeiden University Medical CentreLeidenThe Netherlands
  14. 14.Department of Biochemical GeneticsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus

Personalised recommendations