Skip to main content

Impact of Dietary Intake on Bone Turnover in Patients with Phenylalanine Hydroxylase Deficiency

  • Research Report
  • Chapter
  • First Online:
JIMD Reports, Volume 36

Part of the book series: JIMD Reports ((JIMD,volume 36))

Abstract

Phenylalanine hydroxylase (PAH) deficiency is a genetic disorder characterized by deficiency of the PAH enzyme. Patients follow a phenylalanine-restricted diet low in intact protein, and must consume synthetic medical food (MF) to supply phenylalanine-free protein. We assessed relationships between dietary intake and nutrient source (food or MF) on bone mineral density (BMD) and bone turnover markers (BTM) in PAH deficiency. Blood from 44 fasted females 11–52 years of age was analyzed for plasma phenylalanine, serum BTM [CTx (resorption), P1NP (formation)], vitamin D, and parathyroid hormone (PTH). BTM ratios were calculated to assess resorption relative to formation (CTx/P1NP). Dual energy X-ray absorptiometry measured total BMD and age-matched Z-scores. Three-day food records were analyzed for total nutrient intake, nutrients by source (food, MF), and compliance with MF prescription. Spearman’s partial coefficients (adjusted for age, BMI, energy intake, blood phenylalanine) assessed correlations. All had normal BMD for age (Z-score >−2). Sixty-four percent had high resorption and normal formation indicating uncoupled bone turnover. CTx/P1NP was positively associated with food phenylalanine (r 2 = 0.39; p-value = 0.017), energy (r 2 = 0.41; p-value = 0.011) and zinc (r 2 = 0.41; p-value = 0.014). CTx/P1NP was negatively associated with MF fat (r 2 = −0.44; p-value = 0.008), MF compliance (r 2 = −0.34; p-value = 0.056), and positively with food sodium (r 2 = 0.43; p-value = 0.014). CTx/P1NP decreased significantly with age (p-value = 0.002) and higher PTH (p-value = 0.0002). Phenylalanine was not correlated with any bone indicator. Females with PAH deficiency had normal BMD but elevated BTM, particularly resorption. More favorable ratios were associated with nutrients from MF and compliance. Younger females had less favorable BTM ratios. Promoting micronutrient intake through compliance with MF may impact bone metabolism in patients with PAH deficiency.

Synopsis: Bone mineral density was normal in 44 females with PAH deficiency; however, bone turnover markers suggested uncoupling of bone resorption and formation, particularly in younger patients. Adequate nutrient intake from medical food and overall medical food compliance may positively impact bone turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adami S, Bianchi G, Brandi ML et al (2008) Determinants of bone turnover markers in healthy premenopausal women. Calcif Tissue Int 82:341–347

    Article  CAS  PubMed  Google Scholar 

  • Blau N, van Spronsen FJ, Levy HL (2010) Phenylketonuria. Lancet 376:1417–1427

    Article  CAS  PubMed  Google Scholar 

  • Burch J, Rice S, Yang H et al (2014) Systematic review of the use of bone turnover markers for monitoring the response to osteoporosis treatment: the secondary prevention of fractures, and primary prevention of fractures in high-risk groups. Health Technol Assess 18:1–180

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgard P (2000) Development of intelligence in early treated phenylketonuria. Eur J Pediatr 159(Suppl 2):S74–S79

    Article  PubMed  Google Scholar 

  • Camp KM, Lloyd-Puryear MA, Huntington KL (2012) Nutritional treatment for inborn errors of metabolism: indications, regulations, and availability of medical foods and dietary supplements using phenylketonuria as an example. Mol Genet Metab 107:3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carson DJ, Greeves LG, Sweeney LE, Crone MD (1990) Osteopenia and phenylketonuria. Pediatr Radiol 20:598–599

    Article  CAS  PubMed  Google Scholar 

  • Cavalier E, Carlisi A, Rousselle O, Ferracini R, Chapelle J (2012a) Analytical verification of the IDS-iSYS intact amino-terminal Propeptide of Type I Procollagen (PINP) automated immunoassay. Department of Clinical Chemistry, University of Liège, CHU Sart-Tilman, Liège, Belgium

    Google Scholar 

  • Cavalier E, Carlisi A, Rousselle O, Ferrante N, Chapelle J (2012b) Analytical performance of the IDS-iSYS CrossLaps (CTX-I) automated immunoassay. The American Association for Clinical Chemistry, Los Angeles

    Google Scholar 

  • Chevalley T, Bonjour JP, van Rietbergen B, Rizzoli R, Ferrari S (2012) Fractures in healthy females followed from childhood to early adulthood are associated with later menarcheal age and with impaired bone microstructure at peak bone mass. J Clin Endocrinol Metab 97:4174–4181

    Article  CAS  PubMed  Google Scholar 

  • Demirdas S, Coakley KE, Bisschop PH, Hollak CE, Bosch AM, Singh RH (2015) Bone health in phenylketonuria: a systematic review and meta-analysis. Orphanet J Rare Dis 10:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Enns GM, Koch R, Brumm V, Blakely E, Suter R, Jurecki E (2010) Suboptimal outcomes in patients with PKU treated early with diet alone: revisiting the evidence. Mol Genet Metab 101:99–109

    Article  CAS  PubMed  Google Scholar 

  • Evans S, Daly A, MacDonald J et al (2014) The micronutrient status of patients with phenylketonuria on dietary treatment: an ongoing challenge. Ann Nutr Metab 65:42–48

    Article  CAS  PubMed  Google Scholar 

  • Faje AT, Fazeli PK, Miller KK et al (2014) Fracture risk and areal bone mineral density in adolescent females with anorexia nervosa. Int J Eat Disord 47:458–466

    Article  PubMed  PubMed Central  Google Scholar 

  • Fardellone P, Sejourne A, Paccou J, Goeb V (2014) Bone remodelling markers in rheumatoid arthritis. Mediators Inflamm 2014:484280

    Article  PubMed  PubMed Central  Google Scholar 

  • Faulkner KG, McClung MR, Coleman LJ, Kingston-Sandahl E (1994) Quantitative ultrasound of the heel: correlation with densitometric measurements at different skeletal sites. Osteoporos Int 4:42–47

    Article  CAS  PubMed  Google Scholar 

  • Feinberg SB, Fisch RO (1962) Roentgenologic findings in growing long bones in phenylketonuria. Preliminary study. Radiology 78:394–398

    Article  CAS  PubMed  Google Scholar 

  • Geiger KE, Koeller DM, Harding CO, Huntington KL, Gillingham MB (2016) Normal vitamin D levels and bone mineral density among children with inborn errors of metabolism consuming medical food-based diets. Nutr Res 36:101–108

    Article  CAS  PubMed  Google Scholar 

  • Hansen KE, Ney D (2014) A systematic review of bone mineral density and fractures in phenylketonuria. J Inherit Metab Dis 37:875–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedstrom EM, Svensson O, Bergstrom U, Michno P (2010) Epidemiology of fractures in children and adolescents. Acta Orthop 81:148–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Hillman L, Schlotzhauer C, Lee D et al (1996) Decreased bone mineralization in children with phenylketonuria under treatment. Eur J Pediatr 155(Suppl 1):S148–S152

    Article  PubMed  Google Scholar 

  • Institute of Medicine (U.S.) Subcommittee on Interpretation and Uses of Dietary Reference Intakes, Institute of Medicine (U.S.) Subcommittee on Upper Reference Levels of Nutrients, Institute of Medicine (U.S.) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes (2000) Dietary reference intakes. Applications in dietary assessment: a report of the Subcommittees on Interpretation and Uses of Dietary Reference Intakes and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board, Institute of Medicine, Washington: National Academy Press.

    Google Scholar 

  • IOM (2005) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. National Academies Press, Washington

    Google Scholar 

  • ISCD (2013a) Skeletal health assessment in children and adolescents (males and females ages 5-19). Middletown, International Society for Clinical Densitometry

    Google Scholar 

  • ISCD (2013b) Skeletal health assessment in children from infancy to adolescence. ISCD, Middletown

    Google Scholar 

  • Johansson H, Oden A, Kanis JA et al (2014) A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int 94:560–567

    Article  CAS  PubMed  Google Scholar 

  • Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936

    Article  PubMed  Google Scholar 

  • Koura HM, Abdallah Ismail N, Kamel AF, Ahmed AM, Saad-Hussein A, Effat LK (2011) A long-term study of bone mineral density in patients with phenylketonuria under diet therapy. Arch Med Sci 7:493–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lage S, Bueno M, Andrade F et al (2010) Fatty acid profile in patients with phenylketonuria and its relationship with bone mineral density. J Inherit Metab Dis 33(Suppl 3):S363–S371

    Article  PubMed  Google Scholar 

  • Lammardo AM, Robert M, Rocha JC et al (2013) Main issues in micronutrient supplementation in phenylketonuria. Mol Genet Metab 110(Suppl):S1–S5

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Vasikaran S (2012) Current recommendations for laboratory testing and use of bone turnover markers in management of osteoporosis. Ann Lab Med 32:105–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine MA (2012) Assessing bone health in children and adolescents. Indian J Endocrinol Metab 16:S205–S212

    PubMed  PubMed Central  Google Scholar 

  • McMurry MP, Chan GM, Leonard CO, Ernst SL (1992) Bone mineral status in children with phenylketonuria – relationship to nutritional intake and phenylalanine control. Am J Clin Nutr 55:997–1004

    CAS  PubMed  Google Scholar 

  • Modan-Moses D, Vered I, Schwartz G et al (2007) Peak bone mass in patients with phenylketonuria. J Inherit Metab Dis 30:202–208

    Article  CAS  PubMed  Google Scholar 

  • Morovat A, Catchpole A, Meurisse A et al (2013) IDS iSYS automated intact procollagen-1-N-terminus pro-peptide assay: method evaluation and reference intervals in adults and children. Clin Chem Lab Med 51:2009–2018

    Article  CAS  PubMed  Google Scholar 

  • Naylor K, Eastell R (2012) Bone turnover markers: use in osteoporosis. Nat Rev Rheumatol 8:379–389

    Article  CAS  PubMed  Google Scholar 

  • NCC (2011) Nutrition Data System for Research (NDSR). University of Minnesota, Minneapolis

    Google Scholar 

  • Perez-Duenas B, Cambra FJ, Vilaseca MA, Lambruschini N, Campistol J, Camacho JA (2002) New approach to osteopenia in phenylketonuric patients. Acta Paediatr 91:899–904

    Article  CAS  PubMed  Google Scholar 

  • Qvist P, Christgau S, Pedersen BJ, Schlemmer A, Christiansen C (2002) Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone 31:57–61

    Article  CAS  PubMed  Google Scholar 

  • Roato I, Porta F, Mussa A et al (2010) Bone impairment in phenylketonuria is characterized by circulating osteoclast precursors and activated T cell increase. PLoS One 5:e14167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross AC (2011) The 2011 report on dietary reference intakes for calcium and vitamin D. Public Health Nutr 14:938–939

    Article  PubMed  Google Scholar 

  • Ryan-Harshman M, Aldoori W (2006) New dietary reference intakes for macronutrients and fibre. Can Fam Physician 52:177–179

    PubMed  PubMed Central  Google Scholar 

  • SAS (2013) Statistical Analysis Software (SAS). SAS Institute, Cary

    Google Scholar 

  • Singh RH, Rohr F, Frazier D et al (2014) Recommendations for the nutrition management of phenylalanine hydroxylase deficiency. Genet Med 16:121–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–1508

    Article  CAS  PubMed  Google Scholar 

  • Wheater G, Elshahaly M, Tuck SP, Datta HK, van Laar JM (2013) The clinical utility of bone marker measurements in osteoporosis. J Transl Med 11:201

    Article  PubMed  PubMed Central  Google Scholar 

  • Willett WC, Howe GR, Kushi LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65:1220S–1228S discussion 1229S–1231S

    CAS  PubMed  Google Scholar 

  • Williams RA, Mamotte CD, Burnett JR (2008) Phenylketonuria: an inborn error of phenylalanine metabolism. Clin Biochem Rev 29:31–41

    PubMed  PubMed Central  Google Scholar 

  • Young B, Dao CN, Buchacz K, Baker R, Brooks JT, Investigators HIVOS (2011) Increased rates of bone fracture among HIV-infected persons in the HIV Outpatient Study (HOPS) compared with the US general population, 2000-2006. Clin Infect Dis 52:1061–1068

    Article  PubMed  Google Scholar 

  • Zeman J, Bayer M, Stepan J (1999) Bone mineral density in patients with phenylketonuria. Acta Paediatr 88:1348–1351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the National PKU Alliance for support for DXA scans, Immunodiagnostic Systems (IDS) for support for bone turnover marker measurement, and the Atlanta Clinical and Translational Science Institute (ACTSI) for general study support including staff and facilities at Emory University Hospital’s Clinical Research Network and Children’s Hospital of Atlanta’s Pediatric Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Coakley .

Editor information

Editors and Affiliations

Additional information

Communicated by: Ertan Mayatepek, MD

Appendices

Author Contributions

Kathryn E. Coakley (KEC).

Eric I. Felner (EIF).

Vin Tangpricha (VT).

Peter W. Wilson (PWW).

Rani H. Singh (RHS).

KEC and RHS designed research; KEC, EIF, and RHS conducted research; KEC, VT, and PWW analyzed data; KEC wrote the paper; KEC and RHS had primary responsibility for final content. All authors read and approved the final manuscript.

Corresponding Author

Kathryn E. Coakley, PhD RD

Department of Individual, Family and Community Education

University of New Mexico

604 Cagua Dr. SE

Albuquerque, NM 87108

kcoakley@unm.edu

270-312-6086

Conflict of Interest Statement

No authors have competing interests related to this body of work.

Funding Details

The National PKU Alliance, Immunodiagnostic Systems, Maine Medical Center Research Institute, National Center for Advancing Translational Sciences of the National Institutes of Health under Award number UL1TR000454, and The Burroughs Wellcome Fund.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 SSIEM and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coakley, K.E., Felner, E.I., Tangpricha, V., Wilson, P.W.F., Singh, R.H. (2017). Impact of Dietary Intake on Bone Turnover in Patients with Phenylalanine Hydroxylase Deficiency. In: Morava, E., Baumgartner, M., Patterson, M., Rahman, S., Zschocke, J., Peters, V. (eds) JIMD Reports, Volume 36. JIMD Reports, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8904_2016_39

Download citation

  • DOI: https://doi.org/10.1007/8904_2016_39

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56137-9

  • Online ISBN: 978-3-662-56138-6

  • eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)

Publish with us

Policies and ethics