New Cases of DHTKD1 Mutations in Patients with 2-Ketoadipic Aciduria

  • Ashlee R. Stiles
  • Leah Venturoni
  • Grace Mucci
  • Naser Elbalalesy
  • Michael Woontner
  • Stephen Goodman
  • Jose E. AbdenurEmail author
Case Report
Part of the JIMD Reports book series (JIMD, volume 25)


2-Ketoadipic aciduria (OMIM 204750), a defect in the catabolic pathway of tryptophan, lysine, and hydroxylysine, is characterized by elevations in 2-ketoadipic, 2-aminoadipic, and 2-hydroxyadipic acids. Patients with the aforementioned biochemical profile have been described with a wide range of clinical presentations, from early-onset developmental delay, epilepsy, ataxia, and microcephaly to completely normal. This broad range of phenotypes has led some to question whether 2-ketoadipic aciduria represents a true disease state or if the biochemical abnormalities found in these patients merely reflect an ascertainment bias. We present four additional individuals from two families, with 2-ketoadipic aciduria with compound heterozygous or homozygous mutations in DHTKD1, three of which remain asymptomatic.


2-Aminoadipic 2-Ketoadipic aciduria 2-Oxoadipic aciduria DHTKD1 Hydroxylysine Lysine Organic acidemia Tryptophan 



We thank the families for their steadfast commitment to participate in this study, the generous support of the Fry Family Foundation to CHOC Children’s Metabolic Program, and Dr. Bridget Wilcken for her cooperation and support.


  1. Casey RE, Zaleski WA, Philp M, Mendelson IS (1978) Biochemical and clinical studies of a new case of α-aminoadipic aciduria. J Inherit Metab Dis 1:129–135CrossRefPubMedGoogle Scholar
  2. Danhauser K, Sauer SW, Haack TB et al (2012) DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria. Am J Hum Genet 91:1082–1087CrossRefPubMedPubMedCentralGoogle Scholar
  3. Duran M, Beemer A, Wadman SK, Wendel U, Janssen BJ (1984) A patient with α-ketoadipic and α-aminoadipic aciduria. J Inherit Metab Dis 7:61CrossRefPubMedGoogle Scholar
  4. Fischer MH, Brown RR (1980) Tryptophan and lysine metabolism in alpha-aminoadipic aciduria. Am J Med Genet 5:35–41CrossRefPubMedGoogle Scholar
  5. Fischer MH, Gerritsen T, Opitz JM (1974) Alpha-aminoadipic aciduria, a non-deleterious inborn metabolic defect. Humangenetik 4:265–270Google Scholar
  6. Hirashima M, Hayakawa T, Koike M (1967) Mammalian α-keto acid dehydrogenase complexes: II. An improved procedure for the preparation of 2-oxoglutarate dehydrogenase complex from pig heart muscle. J Biol Chem 242:902–907PubMedGoogle Scholar
  7. Posset R, Opp S, Struys EA et al (2015) Understanding cerebral L-lysine metabolism: the role of L-pipecolate metabolism in Gcdh-deficient mice as a model for glutaric aciduria type I. J Inherit Metab Dis 38:265–272CrossRefPubMedGoogle Scholar
  8. Przyrembel H, Bachmann D, Lombeck I, Becker K, Wendel U, Wadman SK, Bremer HJ (1975) Alpha-ketoadipic aciduria, a new inborn error of lysine metabolism; biochemical studies. Clin Chim Acta 58:257–269CrossRefPubMedGoogle Scholar
  9. Saudubray JM, van den Berghe G, Walter JH (2012) Inborn metabolic diseases: diagnosis and treatment, 5th edn. Springer-Verlag Berlin Heidelberg, GermanyGoogle Scholar
  10. Vianey-Liaud C, Divry P, Cotte J (1985) α -Aminoadipic and α -ketoadipic aciduria: detection of a new case by a screening program using two-dimensional thin layer chromatography of amino acids. J Inherit Metab Dis 8:133–134CrossRefPubMedGoogle Scholar
  11. Wilcken B, Smith A, Brown DA (1980) Urine screening for aminoacidopathies: is it beneficial? J Pediatr 97:492–497CrossRefPubMedGoogle Scholar
  12. Wilson RW, Wilson CM, Gates SC, Higgins JV (1975) α-ketoadipic aciduria: a description of a new metabolic error in lysine-tryptophan degradation. Pediat Res 9:522–526CrossRefPubMedGoogle Scholar
  13. Wu Y, Williams EG, Dubuis S et al (2014) Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell 158:1415–1430CrossRefPubMedPubMedCentralGoogle Scholar
  14. Xu W, Gu M, Sun L et al (2012) A nonsense mutation in DHTKD1 causes Charcot-Marie-Tooth disease type 2 in a large Chinese pedigree. Am J Hum Genet 91:1088–1094CrossRefPubMedPubMedCentralGoogle Scholar
  15. Xu W, Zhu H, Gu M et al (2013) DHTKD1 is essential for mitochondrial biogenesis and function maintenance. FEBS Lett 587:3587–3592CrossRefPubMedGoogle Scholar

Copyright information

© SSIEM and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ashlee R. Stiles
    • 1
  • Leah Venturoni
    • 2
  • Grace Mucci
    • 3
  • Naser Elbalalesy
    • 4
  • Michael Woontner
    • 2
  • Stephen Goodman
    • 2
  • Jose E. Abdenur
    • 1
    • 5
    Email author
  1. 1.Division of Metabolic DisordersCHOC Children’s HospitalOrangeUSA
  2. 2.Anschutz Medical Campus and Children’s Hospital ColoradoUniversity of Colorado at DenverAuroraUSA
  3. 3.Division of PsychologyCHOC Children’s HospitalOrangeUSA
  4. 4.Division of NeurologyCHOC Children’s HospitalOrangeUSA
  5. 5.Department of PediatricsUniversity of California IrvineIrvineUSA

Personalised recommendations