Skip to main content

Metabolic Effects of Increasing Doses of Nitisinone in the Treatment of Alkaptonuria

  • Research Report
  • Chapter
  • First Online:
Book cover JIMD Reports, Volume 24

Part of the book series: JIMD Reports ((JIMD,volume 24))

Abstract

Alkaptonuria is an autosomal recessive disease involving a deficiency of the enzyme homogentisate dioxygenase, which is involved in the tyrosine degradation pathway. The enzymatic deficiency results in high concentrations of homogentisic acid (HGA), which results in orthopedic and cardiac complications, among other symptoms. Nitisinone (NTBC) has been shown to effectively treat alkaptonuria by blocking the conversion of 4-hydroxyphenylpyruvate to HGA, but there have been concerns that using doses higher than about 2 mg/day could cause excessively high levels of tyrosine, resulting in crystal deposition and corneal pathology. We have enrolled seven patients in a study to determine whether higher doses of NTBC were effective at further reducing HGA levels while maintaining tyrosine at acceptable levels. Patients were given varying doses of NTBC (ranging from 2 to 8 mg/day) over the course of between 0.5 and 3.5 years. Urine HGA, plasma tyrosine levels, and plasma NTBC were then measured longitudinally at various doses. We found that tyrosine concentrations plateaued and did not reach significantly higher levels as NTBC doses were increased above 2 mg/day, while a significant drop in HGA continued from 2 to 4 mg/day, with no significant changes at higher doses. We also demonstrated using untargeted metabolomics that elevations in tyrosine from treatment resulted in proportional elevations in alternative tyrosine metabolic products, that of N-acetyltyrosine and γ-glutamyltyrosine.

Competing interests: None declared

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3,4-DPA:

3,4-Dihydroxyphenylacetate

4-HPPD:

4-Hydroxyphenylpyruvate dioxygenase

ACN:

Acetonitrile

FA:

Formic acid

HGA:

Homogentisic acid

LC-MS-Q-TOF:

Liquid chromatography-quadrupole-time of flight mass spectrometry

mg/d:

Milligrams per day

NTBC:

Nitisinone

References

  • Anikster Y, Nyhan WL, Gahl WA (1998) NTBC and alkaptonuria. Am J Hum Genet 63:920–921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ellis MK, Whitfield AC, Gowans LA et al (1995) Inhibition of 4-hydroxyphenylpyruvate dioxygenase by 2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione and 2-(2-chloro-4-methanesulfonylbenzoyl)-cyclohexane-1,3-dione. Toxicol Appl Pharmacol 133:12–19

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Canon JM, Granadino B, Beltran-Valero de Bernabe D et al (1996) The molecular basis of alkaptonuria. Nat Genet 14:19–24

    Article  CAS  PubMed  Google Scholar 

  • Gertsman I, Gangoiti J, Barshop B (2014) Validation of a dual LC–HRMS platform for clinical metabolic diagnosis in serum, bridging quantitative analysis and untargeted metabolomics. Metabolomics 10:312–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gissen P, Preece MA, Willshaw HA, McKiernan PJ (2003) Ophthalmic follow-up of patients with tyrosinaemia type I on NTBC. J Inherit Metab Dis 26:13–16

    Article  CAS  PubMed  Google Scholar 

  • Griffith OW, Bridges RJ, Meister A (1979) Transport of gamma-glutamyl amino acids: role of glutathione and gamma-glutamyl transpeptidase. Proc Natl Acad Sci U S A 76:6319–6322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hall MG, Wilks MF, Provan WM, Eksborg S, Lumholtz B (2001) Pharmacokinetics and pharmacodynamics of NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione) and mesotrione, inhibitors of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) following a single dose to healthy male volunteers. Br J Clin Pharmacol 52:169–177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holme E, Lindstedt S (1998) Tyrosinaemia type I and NTBC (2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione). J Inherit Metab Dis 21:507–517

    Article  CAS  PubMed  Google Scholar 

  • Hughes AT, Milan AM, Christensen P et al (2014) Urine homogentisic acid and tyrosine: simultaneous analysis by liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 963:106–112

    Article  CAS  PubMed  Google Scholar 

  • Introne WJ, Perry MB, Troendle J et al (2011) A 3-year randomized therapeutic trial of nitisinone in alkaptonuria. Mol Genet Metab 103:307–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Janocha S, Wolz W, Srsen S et al (1994) The human gene for alkaptonuria (AKU) maps to chromosome 3q. Genomics 19:5–8

    Article  CAS  PubMed  Google Scholar 

  • Kavana M, Moran GR (2003) Interaction of (4-hydroxyphenyl)pyruvate dioxygenase with the specific inhibitor 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione. Biochemistry 42:10238–10245

    Article  CAS  PubMed  Google Scholar 

  • Loken PR, Magera MJ, Introne W et al (2010) Homogentisic acid interference in routine urine creatinine determination. Mol Genet Metab 100:103–104

    Article  CAS  PubMed  Google Scholar 

  • Macsai MS, Schwartz TL, Hinkle D, Hummel MB, Mulhern MG, Rootman D (2001) Tyrosinemia type II: nine cases of ocular signs and symptoms. Am J Ophthalmol 132:522–527

    Article  CAS  PubMed  Google Scholar 

  • Milch RA (1961) Studies of alcaptonuria: mechanisms of swelling of homogentisic acid-collagen preparations. Arthritis Rheum 4:253–267

    Article  CAS  PubMed  Google Scholar 

  • Ney D, Bay C, Schneider JA, Kelts D, Nyhan WL (1983) Dietary management of oculocutaneous tyrosinemia in an 11-year-old child. Am J Dis Child 137:995–1000

    CAS  PubMed  Google Scholar 

  • Nyhan WL, Rice-Asaro M, Acosta P (1991) Advances in the treatment of amino acid and organic acid disorders. In: Treatment of genetic diseases. Churchill Livingstone, New York

    Google Scholar 

  • Pollak MR, Chou YH, Cerda JJ et al (1993) Homozygosity mapping of the gene for alkaptonuria to chromosome 3q2. Nat Genet 5:201–204

    Article  CAS  PubMed  Google Scholar 

  • Sander J, Janzen N, Terhardt M et al (2011) Monitoring tyrosinaemia type I: Blood spot test for nitisinone (NTBC). Clin Chim Acta 412:134–138

    Article  CAS  PubMed  Google Scholar 

  • Saudubray JM, Ogier H, Charpentier C et al (1984) Hudson memorial lecture. Neonatal management of organic acidurias. Clinical update. J Inherit Metab Dis 7(Suppl 1):2–9

    Article  PubMed  Google Scholar 

  • Schlune A, Thimm E, Herebian D, Spiekerkoetter U (2012) Single dose NTBC-treatment of hereditary tyrosinemia type I. J Inherit Metab Dis 35:831–836

    Article  CAS  PubMed  Google Scholar 

  • Shapira E, Blitzer MG, Miller JB, Affrick DK (1989) Biochemical genetics: a laboratory manual. Oxford University, USA

    Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suwannarat P, O'Brien K, Perry MB et al (2005) Use of nitisinone in patients with alkaptonuria. Metabolism 54:719–728

    Article  CAS  PubMed  Google Scholar 

  • Ware JE Jr, Sherbourne CD (1992) The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30:473–483

    Article  PubMed  Google Scholar 

  • Ware JE Jr, Brook RH, Davies AR, Lohr KN (1981) Choosing measures of health status for individuals in general populations. Am J Public Health 71:620–625

    Article  PubMed Central  PubMed  Google Scholar 

  • Zannoni VG, Malawista SE, La Du BN (1962) Studies on ochronosis. II. Studies on benzoquinoneacetic acid, a probable intermediate in the connective tissue pigmentation of alcaptonuria. Arthritis Rheum 5:547–556

    Article  CAS  PubMed  Google Scholar 

  • Zannoni VG, Lomtevas N, Goldfinger S (1969) Oxidation of homogentisic acid to ochronotic pigment in connective tissue. Biochim Biophys Acta 177:94–105

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Forman HJ (2009) Redox regulation of gamma-glutamyl transpeptidase. Am J Respir Cell Mol Biol 41:509–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Gabrielle Golden for helping with the organization of the study and sample acquisition. We would like to thank Kasie Auler for the tyrosine analysis by the amino acid analyzer. We would like to thank Swedish Orphan Biovitrum for the supply of NTBC used in the study and Abbott Laboratories for the supply of Tyrex-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Barshop .

Editor information

Editors and Affiliations

Additional information

Communicated by: Feillet, MD, PhD

Synopsis

Treatment of alkaptonuria with nitisinone doses greater than 2 mg/day significantly lowers homogentisic acid levels while tyrosine levels remain unchanged.

Compliance with Ethics Guidelines

Conflicts of Interest

Ilya Gertsman has no conflict of interest to declare.

Bruce Barshop has no conflict of interest to declare.

Jan Panyard-Davis has no conflict of interest to declare.

Jon Gangoiti has no conflict of interest to declare.

William Nyhan has no conflict of interest to declare.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Author Contributions

IG: Developed methods for analysis, analyzed the data collected, principal author of the manuscript

BAB: Assisted in the design of chemometric analyses and identification of target compounds, contributed substantially to writing the manuscript

JP-D: Planned and coordinated patient treatment regimens, reviewed the manuscript

JAG: Developed chemometric methodology, reviewed the manuscript

WLN: Conceived of patient treatment regimens, contributed to writing of the manuscript

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

MOESM_01.DOC

Rights and permissions

Reprints and permissions

Copyright information

© 2015 SSIEM and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gertsman, I., Barshop, B.A., Panyard-Davis, J., Gangoiti, J.A., Nyhan, W.L. (2015). Metabolic Effects of Increasing Doses of Nitisinone in the Treatment of Alkaptonuria. In: Zschocke, J., Baumgartner, M., Morava, E., Patterson, M., Rahman, S., Peters, V. (eds) JIMD Reports, Volume 24. JIMD Reports, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8904_2014_403

Download citation

  • DOI: https://doi.org/10.1007/8904_2014_403

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48226-1

  • Online ISBN: 978-3-662-48227-8

  • eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)

Publish with us

Policies and ethics