Skip to main content

The Biological Clock and the Molecular Basis of Lysosomal Storage Diseases

  • Research Report
  • Chapter
  • First Online:
JIMD Reports, Volume 18

Part of the book series: JIMD Reports ((JIMD,volume 18))

Abstract

The lysosomal storage disorders encompass nearly fifty diseases provoked by lack or deficiency of enzymes essential for the breakdown of complex molecules and hallmarked by accumulation in the lysosomes of metabolic residues. Histochemistry and cytochemistry studies evidenced patterns of circadian variation of the lysosomal marker enzymes, suggesting that lysosomal function oscillates rhythmically during the 24-h day. The circadian rhythmicity of cellular processes is driven by the biological clock ticking through transcriptional/translational feedback loops hardwired by circadian genes and proteins. Malfunction of the molecular clockwork may provoke severe deregulation of downstream gene expression regulating a complex array of cellular functions leading to anatomical and functional changes. In this review we highlight that all the genes mutated in lysosomal storage disorders encode circadian transcripts suggesting a direct participation of the biological clock in the pathophysiological mechanisms underlying cellular and tissue derangements hallmarking these hereditary diseases. The 24-h periodicity of oscillation of gene transcription and translation could lead in physiological conditions to circadian rhythmicity of fluctuation of enzyme levels and activity, so that gene transfer could be envisaged to reproduce 24-h periodicity of variation of enzymatic dynamics and circadian rhythmicity could have an impact on the schedule of enzyme replacement therapy.

Competing interests: None declared

Author contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostino PV, Harrington ME, Ralph MR et al (2009) Casein kinase-1-epsilon (CK1epsilon) and circadian photic responses in hamsters. Chronobiol Int 26:126–133

    Article  CAS  PubMed  Google Scholar 

  • Alenghat T, Meyers K, Mullican SE et al (2008) Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 456:997–1000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson G, Beischlag TV, Vinciguerra M, Mazzoccoli G (2013) The circadian clock circuitry and the AHR signaling pathway in physiology and pathology. Biochem Pharmacol 85:1405–1416

    Article  CAS  PubMed  Google Scholar 

  • Appleton RE, Jones AP, Gamble C et al (2012) The use of MElatonin in children with neurodevelopmental disorders and impaired sleep: a randomised, double-blind, placebo-controlled, parallel study (MENDS). Health Technol Assess 16:i-239

    Google Scholar 

  • Asher G, Schibler U (2011) Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13:125–137

    Article  CAS  PubMed  Google Scholar 

  • Asher G, Gatfield D, Stratmann M et al (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Article  CAS  PubMed  Google Scholar 

  • Asher G, Reinke H, Altmeyer M et al (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142:943–953

    Article  CAS  PubMed  Google Scholar 

  • Bagshaw RD, Mahuran DJ, Callahan JW (2005) Lysosomal membrane proteomics and biogenesis of lysosomes. Mol Neurobiol 32:27–41

    Article  CAS  PubMed  Google Scholar 

  • Ballabio A, Gieselmann V (2009) Lysosomal disorders: from storage to cellular damage. Biochim Biophys Acta 1793:684–696

    Article  CAS  PubMed  Google Scholar 

  • Bass J (2012) Circadian topology of metabolism. Nature 491:348–356

    Article  CAS  PubMed  Google Scholar 

  • Bass J, Takahashi JS (2010) Circadian Integration of metabolism and energetics. Science 330:1349–1354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bellettato CM, Scarpa M (2010) Pathophysiology of neuropathic lysosomal storage disorders. J Inherit Metab Dis 33:347–362

    Article  CAS  PubMed  Google Scholar 

  • Berrabah W, Aumercier P, Lefebvre P et al (2011) Control of nuclear receptor activities in metabolism by post-translational modifications. FEBS Lett 585:1640–1650

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya R, von Mayersbach H (1976) Histochemistry of circadian changes of some lysosomal enzymes in rat liver. Acta Histochem Suppl 16:109–115

    CAS  PubMed  Google Scholar 

  • Bonny O, Vinciguerra M, Gumtz ML, Mazzoccoli G (2013) Molecular bases of circadian rhythmicity in renal physiology and pathology. Nephrol Dial Transplant 28:2421–2431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bozek K, Relógio A, Kielbasa SM et al (2009) Regulation of clock-controlled genes in mammals. PLoS One 4(3):e4882

    Article  PubMed Central  PubMed  Google Scholar 

  • Brozzi A, Urbanelli L, Germain PL, Magini A, Emiliani C (2013) hLGDB: a database of human lysosomal genes and their regulation. Database (Oxford) bat024

    Google Scholar 

  • Bugge A, Feng D, Everett LJ et al (2012) Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev 26:657–667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burris TP (2008) Nuclear hormone receptors for heme: REV-ERBalpha and REV-ERBbeta are ligand-regulated components of the mammalian clock. Mol Endocrinol 22:1509–1520

    Article  CAS  PubMed  Google Scholar 

  • Cailotto C, Lei J, van der Vliet J et al (2009) Effects of nocturnal light on (clock) gene expression in peripheral organs: a role for the autonomic innervation of the liver. PLoS One 4(5):e5650

    Article  PubMed Central  PubMed  Google Scholar 

  • Cantó C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20:98–105

    Article  PubMed Central  PubMed  Google Scholar 

  • Cardone L, Hirayama J, Giordano F et al (2005) Circadian clock control by SUMOylation of BMAL1. Science 309:1390–1394

    Article  CAS  PubMed  Google Scholar 

  • Cermakian N, Lange T, Golombek D et al (2013) Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int 30:870–888

    Article  CAS  PubMed  Google Scholar 

  • Challet E (2007) Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148:5648–5655

    Article  CAS  PubMed  Google Scholar 

  • Chedid A, Nair V (1972) Diurnal rhythm in endoplasmic reticulum of rat liver: electron microscopic study. Science 175:176–179

    Article  CAS  PubMed  Google Scholar 

  • Cho H, Zhao X, Hatori M et al (2012) Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485:123–127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cretenet G, Le Clech M, Gachon F (2010) Circadian clock-coordinated 12 hr period rhythmic activation of the IRE1alpha pathway controls lipid metabolism in mouse liver. Cell Metab 11(1):47–57

    Article  CAS  PubMed  Google Scholar 

  • De Cata A, D’Agruma L, Tarquini R, Mazzoccoli G (2014) Rheumatoid arthritis and the biological clock. Expert Rev Clin Immunol 2014 May;10(5):687-95. doi:10.1586/1744666X.2014.899904

  • Di Tacchio L, Le HD, Vollmers C et al (2011) Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333:1881–1885

    Article  Google Scholar 

  • Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549

    Article  CAS  PubMed  Google Scholar 

  • Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508

    Article  CAS  PubMed  Google Scholar 

  • Dufour CR, Levasseur MP, Pham NH et al (2011) Genomic convergence among ERRα, PROX1, and BMAL1 in the control of metabolic clock outputs. PLoS Genet 7(6):e1002143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duguay D, Cermakian N (2009) The crosstalk between physiology and circadian clock proteins. Chronobiol Int 26:1479–1513

    Article  CAS  PubMed  Google Scholar 

  • Eide EJ, Vielhaber EL, Hinz WA et al (2002) The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iε. J Biol Chem 277:17248–17254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feng D, Liu T, Sun Z et al (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331(6022):1315–1319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fraser J, Wraith JE, Delatycki MB (2002) Sleep disturbance in mucopolysaccharidosis type III (Sanfilippo syndrome): a survey of managing clinicians. Clin Genet 62:418–421

    Article  CAS  PubMed  Google Scholar 

  • Fulco M, Sartorelli V (2008) Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tissues. Cell Cycle 7:3669–3679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Futerman AH, van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5:554–565

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi B, Bellet MM, Katada S et al (2010) PER2 controls lipid metabolism by direct regulation of PPARγ. Cell Metab 12:509–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guerrero JM, Pozo D, Diaz-Rodriguez JL, Martinez-Cruz F, Vela-Campos F (2006) Impairment of the melatonin rhythm in children with Sanfilippo syndrome. J Pineal Res 40:192–193

    Article  CAS  PubMed  Google Scholar 

  • Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649–661

    Article  CAS  PubMed  Google Scholar 

  • Hughes ME, DiTacchio L, Hayes KR et al (2009) Harmonics of circadian gene transcription in mammals. PLoS Genet 5(4):e1000442

    Article  PubMed Central  PubMed  Google Scholar 

  • Jetten AM, Kang HS, Takeda Y (2013) Retinoic acid-related orphan receptors α and γ: key regulators of lipid/glucose metabolism, inflammation, and insulin sensitivity. Front Endocrinol (Lausanne) 4:1

    Google Scholar 

  • Journet A, Chapel A, Kieffer S, Roux F, Garin J (2002) Proteomic analysis of human lysosomes: application to monocytic and breast cancer cells. Proteomics 2:1026–1040

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek A, Palm IF, La Fleur SE et al (2006) SCN outputs and the hypothalamic balance of life. J Biol Rhythms 21:458–469

    Article  CAS  PubMed  Google Scholar 

  • Kemp MG, Akan Z, Yilmaz S et al (2010) Tipin-replication protein A interaction mediates Chk1 phosphorylation by ATR in response to genotoxic stress. J Biol Chem 285:16562–16571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15 (Spec No. 2):R271–R277

    Google Scholar 

  • Lamia KA, Sachdeva UM, Ditacchio L et al (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437–440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lowrey PL, Takahashi JS (2011) Genetics of circadian rhythms in Mammalian model organisms. Adv Genet 74:175–230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lübke T, Lobel P, Sleat DE (2009) Proteomics of the lysosome. Biochim Biophys Acta 1793:625–635

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma D, Lin JD (2012) Circadian regulation of autophagy rhythm through transcription factor C/EBPβ. Autophagy 8:124–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma D, Panda S, Lin JD (2011) Temporal orchestration of circadian autophagy rhythm by C/EBPβ. EMBO J 30:4642–4651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maury E, Ramsey KM, Bass J (2010) Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circ Res 106:447–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mazzoccoli G (2011) The timing clockwork of life. J Biol Regul Homeost Agents 25:137–143

    CAS  PubMed  Google Scholar 

  • Mazzoccoli G, Vendemiale G, De Cata A, Carughi S, Tarquini R (2010) Altered time structure of neuro-endocrine-immune system function in lung cancer patients. BMC Cancer 10:314

    Article  PubMed Central  PubMed  Google Scholar 

  • Mazzoccoli G, Giuliani F, Sothern RB (2011a) A method to evaluate dynamics and periodicity of hormone secretion. J Biol Regul Homeost Agents 25:231–238

    CAS  PubMed  Google Scholar 

  • Mazzoccoli G, Sothern RB, Greco G et al (2011b) Time-related dynamics of variation in core clock gene expression levels in tissues relevant to the immune system. Int J Immunopathol Pharmacol 24:869–879

    CAS  PubMed  Google Scholar 

  • Mazzoccoli G, Cai Y, Liu S et al (2012a) REV-ERBalpha and the clock gene machinery in mouse peripheral tissues: a possible role as a synchronizing hinge. J Biol Regul Homeost Agents 26:265–276

    CAS  PubMed  Google Scholar 

  • Mazzoccoli G, Francavilla M, Giuliani F et al (2012b) Clock gene expression in mouse kidney and testis: analysis of periodical and dynamical patterns. J Biol Regul Homeost Agents 26:303–311

    CAS  PubMed  Google Scholar 

  • Mazzoccoli G, Francavilla M, Pazienza V et al (2012c) Differential patterns in the periodicity and dynamics of clock gene expression in mouse liver and stomach. Chronobiol Int 29:1300–1311

    Article  CAS  PubMed  Google Scholar 

  • Mazzoccoli G, Pazienza V, Vinciguerra M (2012d) Clock genes and clock controlled genes in the regulation of metabolic rhythms. Chronobiol Int 29:227–251

    Article  CAS  PubMed  Google Scholar 

  • Mazzoccoli G, Tomanin R, Mazza T et al (2013) Circadian transcriptome analysis in human fibroblasts from Hunter syndrome and impact of iduronate-2-sulfatase treatment. BMC Med Genomics 6:37

    Article  PubMed Central  PubMed  Google Scholar 

  • Mazzoccoli G, Vinciguerra M, Oben J, Tarquini R, De Cosmo S (2014) Non-alcoholic fatty liver disease: the role of nuclear receptors and circadian rhythmicity. Liver Int. doi:10.1111/liv.12534

  • Meikle PJ, Hopwood JJ, Clague AE, Carey WF (1999) Prevalence of lysosomal storage disorders. JAMA 281:249–254

    Article  CAS  PubMed  Google Scholar 

  • Nagoshi E, Saini C, Bauer C et al (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705

    Article  CAS  PubMed  Google Scholar 

  • Nakahata Y, Kaluzova M, Grimaldi B et al (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakahata Y, Sahar S, Astarita G et al (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657

    Article  CAS  PubMed  Google Scholar 

  • Panda S, Antoch MP, Miller BH et al (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320

    Article  CAS  PubMed  Google Scholar 

  • Peek CB, Affinati AH, Ramsey KM et al (2013) Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 342:1243417

    Article  PubMed Central  PubMed  Google Scholar 

  • Pizarro A, Hayer K, Lahens NF, Hogenesch JB (2013) CircaDB: a database of mammalian circadian gene expression profiles. Nucleic Acids Res 41(Database issue):D1009–D1013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Platt FM, Walkley SU (2004) Lysosomal defects and storage. In: Platt FM, Walkley SU (eds) Lysosomal disorders of the brain: recent advances in molecular and cellular pathogenesis and treatment, 1st edn. Oxford University Press, New York, pp 32–49

    Chapter  Google Scholar 

  • Preitner N, Damiola F, Lopez-Molina L et al (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    Article  CAS  PubMed  Google Scholar 

  • Ramsey K, Yoshino J, Brace CS et al (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rutter J, Reick M, Wu LC et al (2001) Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–514

    Article  CAS  PubMed  Google Scholar 

  • Sahar S, Zocchi L, Kinoshita C et al (2010) Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS One 5(1):e8561

    Article  PubMed Central  PubMed  Google Scholar 

  • Schultz ML, Tecedor L, Chang M, Davidson BL (2011) Clarifying lysosomal storage diseases. Trends Neurosci 34:401–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith KD, Fu MA, Brown EJ (2009) Tim-Tipin dysfunction creates an indispensible reliance on the ATR-Chk1 pathway for continued DNA synthesis. J Cell Biol 5:15–23

    Article  Google Scholar 

  • Takahashi JS, Hong HK, Ko CH et al (2008) The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9:764–775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tevy MF, Giebultowicz J, Pincus Z, Mazzoccoli G, Vinciguerra M (2013) Aging signaling pathways and circadian clock-dependent metabolic derangements. Trends Endocrinol Metab 24:229–237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uchiyama Y, von Mayersbach H (1981) Circadian changes of lysosomal enzyme activities in rat hepatocytes using ultracytochemistry. Prog Clin Biol Res 59C(00): 117–124.a

    Google Scholar 

  • Uchiyama Y, Groh V, von Mayersbach H (1981) Different circadian variations as an indicator of heterogeneity of liver lysosomes. Histochemistry 73:321–337

    Google Scholar 

  • Unsal-Kaçmaz K, Chastain PD, Qu PP et al (2007) The human Tim/Tipin complex coordinates an Intra-S checkpoint response to UV that slows replication fork displacement. Mol Cell Biol 27:3131–3142

    Article  PubMed Central  PubMed  Google Scholar 

  • Valekunja UK, Edgar RS, Oklejewicz M et al (2013) Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc Natl Acad Sci U S A 110:1554–1559

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vinciguerra M, Borghesan M, Pazienza V et al (2013) The transcriptional regulators, the immune system and the circadian clock. J Biol Regul Homeost Agents 27:9–22

    CAS  PubMed  Google Scholar 

  • Vinciguerra M, Tevy MF, Mazzoccoli G (2014) A ticking clock links metabolic pathways and organ systems function in health and disease. Clin Exp Med. 2014 May;14(2):133-40. doi:10.1007/s10238-013-0235-8

  • Vitner EB, Platt FM, Futerman AH (2010) Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem 285(27):20423–20427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang X, Downes M, Yu RT et al (2006) Nuclear receptor expression links the circadian clock to metabolism. Cell 126:801–810

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wood PA, Hrushesky WJ (2010) Mammalian TIMELESS is required for ATM-dependent CHK2 activation and G2/M checkpoint control. J Biol Chem 285:3030–3034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yin L, Wu N, Lazar MA (2010) Nuclear receptor Rev-erbalpha: a heme receptor that coordinates circadian rhythm and metabolism. Nucl Recept Signal 8:e001

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the “5x1000” voluntary contribution and by a grant (GM) from the Italian Ministry of Health through Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit (RC1201ME04, RC1203ME46, and RC1302ME31), IRCCS Scientific Institute and Regional General Hospital “Casa Sollievo della Sofferenza,” Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo (FG), Italy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gianluigi Mazzoccoli or Maurizio Scarpa .

Editor information

Editors and Affiliations

Additional information

Communicated by: Verena Peters

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table 1. Lysosomal genes

Appendices

Take-Home Message (Synopsis)

The lysosomal storage disorders are caused by mutation of genes whose expression is driven with 24-h periodicity by the biological clock, and the circadian pathways impact the pathophysiological mechanisms, implying the involvement of the temporal dimension in the pathogenesis of these hereditary diseases.

Compliance with Ethics Guidelines

Conflict of Interest Statement

Gianluigi Mazzoccoli, Tommaso Mazza, Manlio Vinciguerra, Stefano Castellana, and Maurizio Scarpa declare that there are no conflicts of interest with respect to the authorship and/or publication of this article.

Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Details of the Contributions of Individual Authors

GM conceived the purpose of the review and wrote the article, MV and MS wrote the article, and SC and TM performed bioinformatics analysis and represented scheme and figures.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 SSIEM and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mazzoccoli, G., Mazza, T., Vinciguerra, M., Castellana, S., Scarpa, M. (2014). The Biological Clock and the Molecular Basis of Lysosomal Storage Diseases. In: Zschocke, J., Baumgartner, M., Morava, E., Patterson, M., Rahman, S., Peters, V. (eds) JIMD Reports, Volume 18. JIMD Reports, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8904_2014_354

Download citation

  • DOI: https://doi.org/10.1007/8904_2014_354

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44862-5

  • Online ISBN: 978-3-662-44863-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics