Skip to main content

Endogenous metabolic acid-base abnormalities: lactate and other strong ions

  • Conference paper
Anaesthesia, Pain, Intensive Care and Emergency A.P.I.C.E.
  • 946 Accesses

Abstract

Some of the most common clinical problems in critically ill and injured patients are disorders of acid-base equilibrium. Although alkalosis is also common and severe alkalosis may be life-threatening, acidosis appears to be the most frequently encountered acid-base abnormality and has a considerably larger differential diagnosis. Acidosis may occur as a result of increases in arterial partial pressure of carbon dioxide (pCO2) (respiratory acidosis) or from a variety of organic or inorganic, fixed acids (metabolic acidosis). There appears to be a difference in physiological variables and outcomes in patients with either respiratory acidosis or metabolic acidosis [1], [2], leading some investigators to hypothesise that the cause of acidosis rather than the acidosis per se drives the association with clinical outcomes. Although the true cause-effect relationship between acidosis and adverse clinical outcome remains uncertain, metabolic acidosis remains a powerful marker of poor prognosis in critically ill patients [3]–[5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kellum JA, Song M, Subramanian S (2002) Acidemia: good, bad or inconsequential? In: Vincent JL (ed) Yearbook of intensive care and emergency medicine. Springer, Berlin, pp 510–516

    Google Scholar 

  2. Li J, Hoskote A, Hickey C et al (2005) Effect of carbon dioxide on systemic oxygenation, oxygen consumption, and blood lactate levels after bidirectional superior cavopulmonary anastomosis. Crit Care Med 33:984–989

    Article  PubMed  CAS  Google Scholar 

  3. Broder G, Weil MH (1964) Excess lactate: an index of reversibility of shock in human patients. Science 143:1457–1459

    Article  PubMed  CAS  Google Scholar 

  4. Hickling KG, Walsh J, Henderson S et al (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22:1568–1578

    Article  PubMed  CAS  Google Scholar 

  5. Stacpoole PW, Lorenz AC, Thomas RG et al (1988) Dichloroacetate in the treatment of lactic acidosis. Ann Intern Med 108:58–63

    PubMed  CAS  Google Scholar 

  6. Gunnerson KJ, Saul M, Kellum JA (2003) Lactic versus nonlactic metabolic acidosis: outcomes in critically ill patients. Critical Care 7(Suppl 2):P017

    Article  Google Scholar 

  7. Gunnerson KJ, Kellum JA (2003) Acid-base and electrolyte analysis in critically ill patients: are we ready for the new millennium? Curr Opin Crit Care 9:468–473

    Article  PubMed  Google Scholar 

  8. Corey HE (2003) Stewart and beyond: new models of acid-base balance. Kidney Int 64:777–787

    Article  PubMed  CAS  Google Scholar 

  9. Kellum JA (2000) Determinants of blood pH in health and disease. Critical Care 4:6–14

    Article  PubMed  CAS  Google Scholar 

  10. Stewart P (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61:1444–1461

    PubMed  CAS  Google Scholar 

  11. Stewart PA (1981) How to understand acid-base. In: Stewart PA (ed) A quantitative acid-base primer for biology and medicine. Elsevier, New York, pp 1–286

    Google Scholar 

  12. Sirker AA, Rhodes A, Grounds RM et al (2002) Acid-base physiology: the “traditional” and the “modern” approaches. Anaesthesia 57:348–35

    Article  PubMed  CAS  Google Scholar 

  13. Gunnerson KJ, Roberts G, Kellum JA (2003) What is a normal strong ion gap (SIG) in healthy subjects and critically ill patients without acid-base abnormalities? Crit Care Med 31(Suppl A111):12 (abs)

    Google Scholar 

  14. Kellum JA, Kramer DJ, Pinsky MR (1995) Strong ion gap: a methodology for exploring unexplained anions. J Crit Care 10:51–55

    Article  PubMed  CAS  Google Scholar 

  15. Salem MM, Mujais SK (1992) Gaps in the anion gap. Arch Intern Med 152:1625–1629

    Article  PubMed  CAS  Google Scholar 

  16. Fencl V, Jabor A, Kazda A et al (2000) Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med 162:2246–2251

    PubMed  CAS  Google Scholar 

  17. Balasubramanyan N, Havens PL, Hoffman GM (1999) Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med 27:1577–1581

    Article  PubMed  CAS  Google Scholar 

  18. Story DA, Poustie S, Bellomo R (2002) Estimating unmeasured anions in critically ill patients: anion-gap, base-deficit, and strong-ion-gap. Anaesthesia 57:1109–1114

    Article  PubMed  CAS  Google Scholar 

  19. Durward A, Mayer A, Skellett S et al (2003) Hypoalbuminaemia in critically ill children: incidence, prognosis, and influence on the anion gap. Arch Dis Child 88:419–422

    Article  PubMed  CAS  Google Scholar 

  20. Hatherill M, Waggie Z, Purves L et al (2002) Correction of the anion gap for albumin in order to detect occult tissue anions in shock. Arch Dis Child 87:526–529

    Article  PubMed  CAS  Google Scholar 

  21. Cusack RJ, Rhodes A, Lochhead P et al (2002) The strong ion gap does not have prognostic value in critically ill patients in a mixed medical/surgical adult ICU. Intensive Care Med 28:864–869

    Article  PubMed  CAS  Google Scholar 

  22. Moviat M, van Haren F, van der Hoeven H (2003) Conventional or physicochemical approach in intensive care unit patients with metabolic acidosis. Crit Care 7:R41–R45

    Article  PubMed  Google Scholar 

  23. Wilkes P (1998) Hypoproteinemia, strong-ion difference, and acid-base status in critically ill patients. J Appl Physiol 84:1740–1748

    PubMed  CAS  Google Scholar 

  24. Kaplan LJ, Kellum JA (2004) Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med 32:1120–1124

    Article  PubMed  CAS  Google Scholar 

  25. Rocktaeschel J, Morimatsu H, Uchino S et al (2003) Unmeasured anions in critically ill patients: can they predict mortality? Crit Care Med 31:2131–2136

    Article  PubMed  CAS  Google Scholar 

  26. Sumpelmann R, Schurholz T, Marx G et al (1999) Alteration of anion gap during almost total plasma replacement with synthetic colloids in piglets. Intensive Care Med 25:1287–1290

    Article  PubMed  CAS  Google Scholar 

  27. Hayhoe M, Bellomo R, Liu G et al (1999) The aetiology and pathogenesis of cardiopulmonary bypass-associated metabolic acidosis using polygeline pump prime. Intensive Care Med 25:680–685

    Article  PubMed  CAS  Google Scholar 

  28. Figge J, Jabor A, Kazda A et al (1998) Anion gap and hypoalbuminemia. Crit Care Med 26:1807–1810

    PubMed  CAS  Google Scholar 

  29. Dondorp AM, Chau TT, Phu NH et al (2004) Unidentified acids of strong prognostic significance in severe malaria. Crit Care Med 32:1683–1688

    Article  PubMed  CAS  Google Scholar 

  30. Burns RF, Russell LJ (1985) Ion-selective electrode technology: an overview. Contemp Issues Clin Biochem 2:121–130

    PubMed  CAS  Google Scholar 

  31. Fogh-Andersen N, Wimberley PD, Thode J et al (1984) Determination of sodium and potassium with ion-selective electrodes. Clin Chem 30:433–436

    PubMed  CAS  Google Scholar 

  32. Worth HG (1985) A comparison of the measurement of sodium and potassium by flame photometry and ion-selective electrode. Ann Clin Biochem 22 (Pt 4):343–350

    PubMed  CAS  Google Scholar 

  33. De Backer D (2003) Lactic acidosis. Minerva Anestesiol 69:281–284

    PubMed  Google Scholar 

  34. Luft FC (2001) Lactic acidosis update for critical care clinicians. J Am Soc Nephrol 12:S15–S19

    Article  PubMed  Google Scholar 

  35. Vincent JL, Dufaye P, Berre J et al (1983) Serial lactate determinations during circulatory shock. Crit Care Med 11:449–451

    Article  PubMed  CAS  Google Scholar 

  36. James JH, Luchette FA, McCarter FD et al (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354:505–508

    Article  PubMed  CAS  Google Scholar 

  37. Bellomo R, Kellum JA, Pinsky MR (1996) Transvisceral lactate fluxes during early endotoxemia. Chest 110:198–204

    PubMed  CAS  Google Scholar 

  38. De Backer D, Creteur J, Zhang H et al (1997) Lactate production by the lungs in acute lung injury. Am J Respir Crit Care Med 156:1099–1104

    PubMed  Google Scholar 

  39. Durward A, Skellett S, Mayer A et al (2001) The value of the chloride: sodium ratio in differentiating the aetiology of metabolic acidosis. Intensive Care Med 27:828–835

    Article  PubMed  CAS  Google Scholar 

  40. Margaria R, Edwards R, Dill D (1933) The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Am J Physiol 106:689–715

    CAS  Google Scholar 

  41. Cowley RA, Attar S, LaBrosse E et al (1969) Some significant biochemical parameters found in 300 shock patients. J Trauma 9:926–938

    Article  PubMed  CAS  Google Scholar 

  42. Schweizer O, Howland WS (1968) Prognostic significance of high lactate levels. Anesth Analg 47:383–388

    PubMed  CAS  Google Scholar 

  43. Weil MH, Afifi AA (1970) Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock). Circulation 41:989–1001

    PubMed  CAS  Google Scholar 

  44. Bakker J, Gris P, Coffernils M et al (1996) Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg 171:221–226

    Article  PubMed  CAS  Google Scholar 

  45. Abramson D, Scalea TM, Hitchcock R et al (1993) Lactate clearance and survival following injury. J Trauma 35:584–588

    PubMed  CAS  Google Scholar 

  46. Bakker J, Coffernils M, Leon M et al (1991) Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest 99:956–962

    Article  PubMed  CAS  Google Scholar 

  47. Nguyen HB, Rivers EP, Knoblich BP et al (2004) Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 32:1637–1642

    Article  PubMed  Google Scholar 

  48. Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30

    Article  PubMed  CAS  Google Scholar 

  49. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  50. Rossi AF, Khan DM, Hannan R et al (2005) Goal-directed medical therapy and point-of-care testing improve outcomes after congenital heart surgery. Intensive Care Med 31:98–104

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia

About this paper

Cite this paper

Gunnerson, K.J., Kellum, J.A. (2006). Endogenous metabolic acid-base abnormalities: lactate and other strong ions. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/88-470-0407-1_38

Download citation

  • DOI: https://doi.org/10.1007/88-470-0407-1_38

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0406-1

  • Online ISBN: 978-88-470-0407-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics