Skip to main content

Clinical significance of monitoring the central nervous system in the operation room and the intensive care unit

  • Conference paper
Anaesthesia, Pain, Intensive Care and Emergency A.P.I.C.E.
  • 941 Accesses

Abstract

Electrophysiological monitoring of the central nervous system (CNS) has become a valuable adjunct, and in selected circumstances, a standard of care for surgical procedures where there is a possibility of neuronal injury. Electrophysiological monitoring is made possible by the inborn electrical properties of the human nervous system, thus assessing both structural and functional aspects of the neural pathways tested. These methods can be used when the patient is unable to cooperate (e.g. traumatic coma) or is rendered unconscious (e.g. anaesthesia, intensive care unit, ICU). Although limited to specific neural pathways of the central and the peripheral nervous system, these techniques have become an essential component of some surgical procedures, where their use provides amatchless contribution to intraoperative decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vauzelle C, Stagnara P, Jouvinroux P (1973) Is a desflurane-remifentanil based anesthetic really the best for the wake-up test? Clin Orthop 93:173–178

    Article  PubMed  Google Scholar 

  2. Sloan TB (1997) Scoliosis surgery. Anesth Clin North Am 15:573–591

    Article  Google Scholar 

  3. Cooper R, Osselton JW, Shaw JC (1980) EEG Technology. Butterworths, Boston

    Google Scholar 

  4. Nuwer MR (1993) Intraoperative electroencephalography. J Clin Neurophys 10:437–444

    Article  CAS  Google Scholar 

  5. Rampil IJ (1998) A primer for EEG signal processing in anesthesia. Anesthesiology 89:980–1002

    Article  PubMed  CAS  Google Scholar 

  6. Chiappa KH (1990) Evoked potentials in clinical medicine. Raven Press, New York

    Google Scholar 

  7. Luders H (1989) Advanced evoked potentials. Kluwer Academia Publishers, Boston

    Google Scholar 

  8. Moller AR (1988) Evoked potentials in intraoperative monitoring. Williams & Wilkins, Baltimore

    Google Scholar 

  9. Nuwer MR (1986) Evoked potential monitoring in the operating room. Raven Press, New York

    Google Scholar 

  10. Jacobson GP, Tew JM Jr (1987) Intraoperative evoked potential monitoring. J Clin Neurophysiol 4:145–176

    PubMed  CAS  Google Scholar 

  11. Sloan T (1996) Evoked potentials. In: Albin MS (ed) Atextbook of neuroanesthesia with neurosurgical and neuroscience perspectives. McGraw-Hill, New York, pp 221–276

    Google Scholar 

  12. Erwin CW, Erwin AC (1993) The use of brainstem auditory evoked potentials in intraoperative monitoring. J Clin Neurophysiol 10:425

    Article  PubMed  CAS  Google Scholar 

  13. Anonymous (1990) Assessment: intraoperative neurophysiology. Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 40:1644–1646

    Google Scholar 

  14. Friedman WA, Grundy BL (1987) Monitoring of sensory evoked potentials is highly reliable and helpful in the operating room. J Clin Monit 3:38–44

    PubMed  CAS  Google Scholar 

  15. Meyer PR, Cotler HB, Gireesan GT (1988) Operative complications resulting from thoracic and lumbar spine internal fixation. J Clin Orthop 237:125–131

    Google Scholar 

  16. Epstein NE, Danto J, Nardi D (1993) Evaluation of intraoperative somatosensory-evoked potential monitoring during 100 cervical operations. Spine 18:737–747

    Article  PubMed  CAS  Google Scholar 

  17. Dawson EG, Sherman JE, Kanim LE et al (1991) Results of the Scoliosis Research Society and the European Spinal Deformity Society survey. Spine 16:S361–S364

    Article  PubMed  CAS  Google Scholar 

  18. Nuwer MR, Dawson EG, Carlson LG et al (1995) Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol 96:6–11

    Article  PubMed  CAS  Google Scholar 

  19. Sloan TB (1997) Evoked potential monitoring of the central nervous system intraoperatively. Anesth Clin North Am 15:593–611

    Article  Google Scholar 

  20. Friedman WA (1988) Somatosensory evoked potentials in neurosurgery. Neurosurgery 22:140–142

    PubMed  CAS  Google Scholar 

  21. Owen JH, Kostuik JP, Gornet M et al (1994) The use of mechanically elicited electromyograms to protect nerve roots during surgery for spinal degeneration. Spine 19:1704–1710

    Article  PubMed  CAS  Google Scholar 

  22. Leppanen R, Maguire J, Wallace S et al (1995) Intraoperative lower extremity reflex muscle as an adjunct to convention also matosensory-evoked potential sand descending neurogenic monitoring in idiopathic scoliosis. Spine 20:1872–1877

    Article  PubMed  CAS  Google Scholar 

  23. Staudt LA, Nuwer MR, Peacock WJ (1995) Intraoperative monitoring during selective posterior rhizotomy: technique and patient outcome. Electroencephalogr Clin Neurophysiol 97:296–309

    Article  PubMed  CAS  Google Scholar 

  24. Holland NR (2002) Intraoperative electromyography. J Clin Neurophysiol 19:444–453

    Article  PubMed  Google Scholar 

  25. Owen JH, Laschinger J, Bridwell K et al (1988) Sensitivity and specificity of somatosensory and spinal evoked potentials. Spine 13:1111–1118

    Article  PubMed  CAS  Google Scholar 

  26. Levy WJ, York DH, McCaffrey M, Tanzer F (1984) Motor evoked potentials from transcranial stimulation of the motor cortex in cats. Neurosurgery 15:214–227

    PubMed  CAS  Google Scholar 

  27. Levy WJ (1987) Clinical experience with motor and cerebellar evoked potential monitoring. Neurosurgery 20:169–182

    PubMed  Google Scholar 

  28. Day BL, Dressler D, Maertens de Noordhout A et al (1989) Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol 412:449–473

    PubMed  CAS  Google Scholar 

  29. Day BL, Thompson PD, Dick JP et al (1987) Different sites of action of electrical and magnetic stimulation of the human brain. Neurosci Lett 75:101–106

    Article  PubMed  CAS  Google Scholar 

  30. Rothwell JC, Thompson PD, Day BL et al (1987) Motor cortex stimulation in intact man. 2. Multiple descending volleys. Brain 110:1173–1180

    Article  PubMed  Google Scholar 

  31. Edmonds H Jr, Paloheimo MPJ, Backman MH et al (1989) Motor evoked potential monitoring during upper cervical spine surgery. Spine 14:683[AQ1]

    Article  PubMed  Google Scholar 

  32. Shields CB, Paloheimo MPJ, Backman MH et al (1990) Intraoperative use of transcranial magnetic motor evoked potentials. In: Chokroverty S (ed) Magnetic stimulation in clinical neurophysiology. Butterworths, London, pp173–184

    Google Scholar 

  33. MacDonald DB (2002) Safety of intraoperative transcranial electric stimulation motor evoked potentials. J Clin Neurophysiol 19:416–429

    Article  PubMed  Google Scholar 

  34. Cheek JC (1993) Posterior fossa intraoperative monitoring. J Clin Neurophysiol 10:412–424

    Article  PubMed  CAS  Google Scholar 

  35. Taniguchi M, Cedzich C, Schramm J (1993) Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery 32:219–226

    Article  PubMed  CAS  Google Scholar 

  36. Yingling CD (1994) Intraoperative monitoring of cranial nerves in skull base surgery. In: Jackler RK, Brackmann DE (eds) Neurology. Mosby, St. Louis, pp 967–1002

    Google Scholar 

  37. Apel DM, Marrero G, King J et al (1991) Avoiding paraplegia during anterior spinal surgery. The role of somatosensory evoked potential monitoring with temporary occlusion of segmental spinal arteries. Spine 16(8 Suppl): S365–S370

    PubMed  CAS  Google Scholar 

  38. Anonymous (1991) National Institutes of Health (NIH) Consensus Development Conference (December 11–13, 1991). Consensus Statement 9

    Google Scholar 

  39. Harper CM, Harner SG, Slavit DH et al (1992) Effect of BAEP monitoring on hearing preservation during acoustic neuroma resection. Neurology 42:1551–1553

    PubMed  CAS  Google Scholar 

  40. Nadol JB Jr, Chiong CM, Ojemann RG et al (1992) Preservation of hearing and facial nerve function in resection of acoustic neuroma. Laryngoscope 102:1153–1158

    Article  PubMed  Google Scholar 

  41. Fischer G, Fischer C, Remond J (1992) Hearing preservation in acoustic neurinoma surgery. J Neurosurg 76:910–917

    Article  PubMed  CAS  Google Scholar 

  42. Cedzich C, Schramm J (1990) Monitoring of flash visual evoked potentials during neurosurgical operations. Int Anesthesiol Clin 28:165–169

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Italia

About this paper

Cite this paper

Freye, E. (2006). Clinical significance of monitoring the central nervous system in the operation room and the intensive care unit. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/88-470-0407-1_15

Download citation

  • DOI: https://doi.org/10.1007/88-470-0407-1_15

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0406-1

  • Online ISBN: 978-88-470-0407-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics