Skip to main content

Reflections on frequently used viscoplastic constitutive models

  • Conference paper
Trends and Applications of Mathematics to Mechanics

Abstract

The constitutive problems of plasticity and viscoplasticity are considered in detail via an internal variable formulation. The treatment is set within the framework of the generalized standard material model and exploits the appropriate mathematical tools of convex analysis and subdifferential calculus. Furthermore two frequently used viscoplastic constitutive models are analyzed, the Perzyna viscoplastic model and the Duvaut-Lions viscoplastic model. In the existing literature these two models are frequently used as alternatives. In the sequel interesting relations between them are outlined and it is shown that, under particular hypotheses, the Duvaut-Lions model may be regarded as derived from the Perzyna model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rockafellar, R.T. (1970): Convex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  2. Hiriart-Urruty, J.-B., Lemaréchal, C. (1993): Convex analysis and minimization algorithms. Vols. I, II. Springer, Berlin

    MATH  Google Scholar 

  3. Halphen, B., Nguyen, Q.S. (1975): Sur les matériaux standards généralisés. J. Mécanique 14, 39–63

    MATH  Google Scholar 

  4. Moreau, J.-J. (1976): Application of convex analysis to the treatment of elastoplastic systems. In: Germain, P., Nayroles, B. (eds.): Applications of methods of functional analysis to problems in mechanics. Springer, Berlin, pp. 56–89

    Google Scholar 

  5. Eve, R.A., Reddy, B.D., Rockafellar, R.T. (1990): An internal variable theory of elastoplasticity based on the maximum plastic work inequality. Quart. Appl. Math. 48, 59–83

    MATH  MathSciNet  Google Scholar 

  6. Romano, G., Rosati, L., Marotti de Sciarra, F. (1993): Variational formulations of nonlinear and nonsmooth structural problems. Internat. J. Non-Linear Mech. 28, 195–208

    Article  MATH  MathSciNet  Google Scholar 

  7. De Angelis, F. (1998): Constitutive models and computational algorithms in elastoviscoplasticity. (Italian) Ph.D. Thesis. Università di Napoli Federico II., Naples

    Google Scholar 

  8. De Angelis, F. (2000): An internal variable variational formulation of viscoplasticity. Comput. Methods Appl. Mech. Engrg. 190, 35–54

    Article  MATH  MathSciNet  Google Scholar 

  9. Perzyna, P. (1963): The constitutive equations for rate sensitive plastic materials. Quart. Appl. Math. 20, 321–332

    MATH  MathSciNet  Google Scholar 

  10. Duvaut, G., Lions, J.-L. (1972): Les inéquations en mécanique et en physique. Dunod, Paris

    MATH  Google Scholar 

  11. Simo, J.C., Kennedy, J.J., Govindjee, S. (1988): Nonsmooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms. Internat. J. Numer. Methods Engrg. 26, 2161–2185

    Article  MATH  MathSciNet  Google Scholar 

  12. Ju, J.W. (1990): Consistent tangent moduli for a class of viscoplasticity. J. Engrg. Mech. 116, 1764–1779

    Google Scholar 

  13. Ristinmaa, M., Ottosen, N.S. (1998): Viscoplasticity based on an additive split of the conjugated forces. Eur. J. Mech. A Solids 17, 207–235

    Article  MATH  MathSciNet  Google Scholar 

  14. Ristinmaa, M., Ottosen, N.S. (2000): Consequences of dynamic yield surface in viscoplasticity. Internat. J. Solids Structures 37, 4601–4622

    Article  MATH  Google Scholar 

  15. Naghdi, P.M., Murch, S.A. (1963): On the mechanical behaviour of viscoelastic/plastic solids. Trans. ASME Ser. E J. Appl. Mech. 30, 321–328

    MATH  MathSciNet  Google Scholar 

  16. Skrzypek, J.J., Hetnarski, R.B. (1993): Plasticity and creep. CRC Press, Boca Raton, FL

    MATH  Google Scholar 

  17. Lemaitre, J., Chaboche, J.L. (1990): Mechanics of solid materials. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  18. Hill, R. (1950): The mathematical theory of plasticity. Clarendon Press, Oxford

    MATH  Google Scholar 

  19. Luenberger, D.G. (1973): Introduction to linear and nonlinear programming. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  20. Yosida, K. (1980): Functional Analysis. 6th edition. Springer, Berlin

    MATH  Google Scholar 

  21. Moreau, J.-J. (1965): Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299

    MATH  MathSciNet  Google Scholar 

  22. Zarantonello, E.H. (1971): Projections on convex sets in Hilbert space and spectral theory. I.,II. In: Zarantonello, E.H. (ed.): Contributions to nonlinear functional analysis. Academic Press, New York, pp. 237–424

    Google Scholar 

  23. Romano, G., Romano, M. (1985): Elastostatics of structures with unilateral conditions on stress and displacement fields. In: Unilateral problems in structural analysis. (CISM Courses and Lectures, no. 288). Springer, Vienna, pp. 315–338

    Google Scholar 

  24. De Angelis, F. (2003): Relation between the Duvaut-Lions model and the Perzyna model in viscoplasticity. (Italian). In: 16th AIMETA Congress of Theoretical and Applied Mechanics. Ferrara, Sept. 9–12, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Italia

About this paper

Cite this paper

De Angelis, F. (2005). Reflections on frequently used viscoplastic constitutive models. In: Rionero, S., Romano, G. (eds) Trends and Applications of Mathematics to Mechanics. Springer, Milano . https://doi.org/10.1007/88-470-0354-7_3

Download citation

  • DOI: https://doi.org/10.1007/88-470-0354-7_3

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0269-2

  • Online ISBN: 978-88-470-0354-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics