Skip to main content

Intracranial MR Angiography

  • Chapter
Magnetic Resonance Angiography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carriero A, Delle Monache C, Cuonzo G et al (1990) Angiorafia a Risonanza Magnetica del circolo intracranico. Tecnica-anatomia. Radiol med. 80:588–593

    CAS  PubMed  Google Scholar 

  2. Pernicone JR, Potchen EJ (1993) Intracranial vascular anatomy. In Potchen EJ, Haacke EM, Siebert JE et al Magnetic Resonance Angiography, St Louis, Mosby

    Google Scholar 

  3. Stock WK, Wetzel S, Kirsch E et al (1996) Anatomic evaluation of the circle of Willis: MR Angiography versus Intraarterial Digital Subtraction Angiography. AJNR Am J Neuroradiol 17:1495–1499

    CAS  PubMed  Google Scholar 

  4. Katz DA, Marks MP, Napel SA et al (1995) Circle of Willis: evaluation with spiral CT angiography, MR angiography and conventional angiography. Radiology 195:445–449

    CAS  PubMed  Google Scholar 

  5. Barboriak DP, Provenzale JM (1997) Pictorial review: magnetic resonance angiography of arterial variants at the Circle of Willis. Clin Radiol 52:429–436

    CAS  PubMed  Google Scholar 

  6. Hoksbergen AW, Majoie CB, Hulsmans FJ et al (2003) Assesment of the collateral function of the circle of Willis: three-dimensional time-of-flight MR angiography compared with transcranial color-coded duplex sonograpy. AJNR Am J Neuroradiol 24:456–462

    PubMed  Google Scholar 

  7. Kusunoki K, Oka Y, Saito M et al (1999) Changes in visibility of intracranial arteries on MRA with normal ageig. Neuroradiology 41:813–819

    CAS  PubMed  Google Scholar 

  8. Uchino A, Kato A, Takase Y et al (2000) Persistent trigeminal artery variants deteceted by MR angiogrphy. Eur Radiol. 10(11):1801–4

    CAS  PubMed  Google Scholar 

  9. Friedlander RM, Oglivy CS (1996) Aneurysmal subarachnoid hemorrhage in a patient with bilateral A1 fenestrations associated with an azygos anterior cerebral artery. Case report and literature review. J Neurosurg. Apr; 84(4):681–4

    CAS  Google Scholar 

  10. Uchino A, Kato A, Takase Y et al (2000) Middle cerebral artery variations detected by magnetic resonance angiography. Eur Radiol. 10:560–563

    CAS  PubMed  Google Scholar 

  11. Wentz KU, Rother J, Schwartz A et al (1994) Intracranial vertebrobasilar system: MR angiography. Radiology 190:105–110

    CAS  PubMed  Google Scholar 

  12. Goldstein JH, Woodcock R, Do HM et al (1999) Complete duplication or extreme fenestration of the basilar artery. AJNR Am J Neuroradiol. Jan; 20(1):149–50

    CAS  Google Scholar 

  13. Liebeskind DS (2003) Collateral circulation. Stroke. Sep; 34(9):2279–84. Epub 2003 Jul 24

    Google Scholar 

  14. Ayanzen RH, Bird CR, Keller PJ et al (2000) Cerebral MR venography: normal anatomy and potential diagnostic pitfalls. AJNR Am J Neuroradiol 21:74–78

    CAS  PubMed  Google Scholar 

  15. Carriero A, Cuonzo G, Iezzi A et al (1992) Venogramma con Risonanza Magnetica del circolo intracranico. Tecnica, anatomia, indicazioni. Rad Med 83:182–191

    CAS  Google Scholar 

  16. Shane Tubbs R, Jerry Oakes W. (2002) Letter to the Editor. Neuroanatomy, volume 1, p. 14

    Google Scholar 

  17. Curè JK, Van Tassel P et al (1994) Normal and variant anatomy of the dural venous sinuses. Semin Ultrasound CT MR 15:499–519

    PubMed  Google Scholar 

  18. Shigematsu Y, Korogi Y, Hirai T et al (1999) 3D TOF turbo MR angiography for intracranial arteries: phantom and clinical studies. J Magn Reson Imaging 10:939–944

    CAS  PubMed  Google Scholar 

  19. Oelerich M, Lentschig MG, Zunker P et al (1998) Intracranial vascular stenosis and occlusion: comparison of 3D time-to-flight and 3D phase-contrast MR angiography. Neuroradiology 40:567–573

    CAS  PubMed  Google Scholar 

  20. Blatter DD, Parker DL, Robinson RO (1991) Cerebral MR angiography with multiple overlapping thin-slab acquisition.I. Quantitative analysis of vessel visibility. Radiology 179:805–811

    CAS  PubMed  Google Scholar 

  21. Blatter DD, Parker DL, Ahn SS et al (1992) Cerebral MR Angiography with multiple overlapping thin slab acquisition II. Early clinical experience. Radiology 183:379–389

    CAS  PubMed  Google Scholar 

  22. Liu K, Rutt BK (1998) Sliding interleaved kY (SLINKY) acquisition: a novel 3D MRA technique with suppressed slab boundary artifact. J Magn Reson Imaging. Jul–Aug 8(4):903–11

    CAS  Google Scholar 

  23. Dagirmanjian A, Ross JS, Obuchowski N et al (1995) High resolution, magnetization transfer saturation, variable flip angle, time-of-flight MRA in the detection of intracranial vascular stenoses. J Comput Assist Tomogr. Sep–Oct; 19(5):700–6

    CAS  Google Scholar 

  24. Nagele T, Klose U, Grodd W et al (1995) Nonlinear excitation profiles for three-dimensional inflow MR angiography. J Magn Reson Imaging. Jul–Aug; 5(4):416–20

    CAS  Google Scholar 

  25. Catalano C, Pavone P, Laghi A et al (1995) Clementi M, Di Girolamo M, Albertini Petroni G, Passariello R Magnetic resonance angiography of the intracranial circle using magnetization transfer contrast (MTC). Radiol Med. Mar; 89(3):245–9

    CAS  Google Scholar 

  26. Creasy J, Price R, Presbrery T et al (1990) Gadolinium enhanced MR angiography. Radiology 175:280–283

    CAS  PubMed  Google Scholar 

  27. Tartaro A, Severini S, Tonni G et al (1992) Magnetic resonance angiography with gadolinium (Gd-DTPA) versus baseline magnetic resonance angiography in the study of the intracranial circulation. Radiol Med (Torino). 84:536–43

    CAS  PubMed  Google Scholar 

  28. Parker DL, Goodrich KC, Alexander AL et al (1998) Optimized visualization of vessel in contrast enhanced intracranial MR angiography. Magn Reson Med 40:873–882

    CAS  PubMed  Google Scholar 

  29. Parker DL, Tsuruda JS, Goodrich KC et al (1998) Contrast-enhanced magnetic resonance angiography of cerebral arteries. A review. Invest Radiol 33:560–572

    CAS  PubMed  Google Scholar 

  30. Petersen D, Klose U (1997) Indications for contrast medium administration in MR-angiography of cerebral blood vessels. Radiologe 37:508–14

    CAS  PubMed  Google Scholar 

  31. Korosec FR, Frayne R, Grist TM et al (1996) Time resolved contrast-enhanced 3D MR angiography. Magn reson. Med 36:345–351

    CAS  Google Scholar 

  32. Duran M, Schoenberg SO, Yuh WT et al (2002) Cerebral arteriovenus malformations: morphologic evaluation by ultrashort 3D gadolinium-enhanced MR angiography. Eur Radiol 12:2957–2964

    CAS  PubMed  Google Scholar 

  33. Suzuki M, Matsui O, Ueda F et al (2002) Contrast-enhanced MR angiography (enhanced 3-D fast gradient echo) for diagnosis of cerebral aneurysms. Neuroradiology 44:17–20

    CAS  PubMed  Google Scholar 

  34. Metens T, Rio F, Baleriaux D et al (2000) Intracranial aneurysms: detection with gadolinium-enhanced dynamic three-dimensional MR angiography-initial results. Radiology 216:39–46

    CAS  PubMed  Google Scholar 

  35. Klisch J, Strecker R, Hennig J et al (2000) Time-resolved projection MRA: clinical application in intracranial vascular malformations. Neuroradiology 42:104–107

    CAS  PubMed  Google Scholar 

  36. Weiger M, Pruessmann KP, Kassner A et al (2000) Contrast-enhanced 3D MRA using SENSE. J Magn Reson Imaging 12:671–677

    CAS  PubMed  Google Scholar 

  37. Sodickson DK, McKenzie CA, Li W, Wolff S et al (2000) Contrast-enhanced 3D MR angiography with simultaneous acquisition of spatial harmonics: A pilot study. Radiology 217:284–289

    CAS  PubMed  Google Scholar 

  38. Liauw L, van Buchem MA, Slipt A et al (2000) MR angiography of the intracranial venous system. Radiology 214:678–682

    CAS  PubMed  Google Scholar 

  39. Walker MF, Souza SP, Domoulin CL (1988) Quantitative flow measurement in phase contrast MR angiography. JCAT 12:304–313

    CAS  Google Scholar 

  40. Bass JC, Prince MR, Londy FJ et al (1997) Effect of gadolinium on phase-contrast MR angiography of the renal arteries. AJR 168:261–266

    CAS  PubMed  Google Scholar 

  41. Suzuki M, Matsui O, Kobayashi K et al (2003) Contrast-enhanced MRA for investigation of cerebral arteriovenus malformations. Neuroradiology 45:231–235

    CAS  PubMed  Google Scholar 

  42. Bogousslavsky J, Van Melle G, Regli F et al (1988) The Lausanne stroke registry: analysis of 1000 consecutive patients with first stroke. Stroke 19:1083–1092

    CAS  PubMed  Google Scholar 

  43. Caplan LR (1989) Intracranial branch atheromatous disease: a neglected, understudied and underused concept. Neurology 39:1246–1250

    CAS  PubMed  Google Scholar 

  44. Chimowitz MI, Kokkinos J, Strong J et al (1995) The warfarin-aspirin symptomatic intracranial disease study. Neurology 45:1488–1493

    CAS  PubMed  Google Scholar 

  45. Norrving B, Lowenhielm P (1988) Epidemiology of stroke in Lund-Orup, Sweden 1983–85. Acta Neurol Scand 78:408–413

    CAS  PubMed  Google Scholar 

  46. Fujita N, Hirabuki N, Fujii K et al (1994) MR imaging of middle cerebral artery stenosis and occlusion: value of MR angiography. AJNR 15:335–341

    CAS  PubMed  Google Scholar 

  47. Furst G, Hofer M, Steinmetz H et al (1996) Intracranial stenoocclusive disease: MR angiography with magnetization transfer and variable flip angle. AJNR 17:1749–1757

    CAS  PubMed  Google Scholar 

  48. Heiserman JE, Drayer BP, Keller PJ et al (1992) Intracranial vascular stenosis and occlusion: evaluation with three-dimensional time-of-flight MR angiography. Radiology 185:667–673

    CAS  PubMed  Google Scholar 

  49. Korogi Y, Takahasi M, Nakagawa T et al (1994) Intracranial vascular stenosis and occlusion: diagnostic accuracy of three-dimensional, Fourier transform, time-of-flight MR angiography. Radiology 193:187–193

    CAS  PubMed  Google Scholar 

  50. Korogi Y, Takahasi M, Nakagawa T et al (1997) Intracranial vascular stenosis and occlusion: MR angiographic findings. AJNR 18:135–143

    CAS  PubMed  Google Scholar 

  51. Ley-Pozo J, Reingelstein EB (1990) Noninvasive detection of occlusive disease of the carotid syphon and middle cerebral artery. Ann Neurol 28:640–647

    CAS  PubMed  Google Scholar 

  52. Uehara T, Mori E, Tabuchi M et al (1994) Detection of occlusive lesions in intracranial arteries by three-dimensional time-of-flight magnetic resonance angiography. Cerebrovasc Dis 4:365–370

    Google Scholar 

  53. Keston P, Murray AD, Jackson A (2003) Cerebral Perfusion imaging using contrast-enhanced MRI. Clinical Radioloy July 505–513

    Google Scholar 

  54. Stock KW, Radue EW, Jacob AL et al (1995) Intracranial arteries: prospective blinded comparative study of MR angiography and DSA in 50 patients. Radiology 35:822–829

    Google Scholar 

  55. Hirai T, Korogi Y, Ono K et al (2002) Prospective valuation of suspected stenoocclusive disease of the intracranial artery: combined MR angiography and CT angiography compared with digital subtraction angiography. AJNR 23:93–101

    PubMed  Google Scholar 

  56. Masaryk TJ, Modic MT, Ross JS et al (1989) Intracranial circulation: preliminary results with three-dimensional (volume) MR angiography. Radiology 171:793–799

    CAS  PubMed  Google Scholar 

  57. Mallouhi A, Chemelli A, Judmaier W et al (2002) Investigation of cerebrovascular disease with MR angiography: comparison of volume rendering and maximum intensity projection algorithms-initial assessment. Neuroradiology. Dec; 44(12):961–7. Epub 2002 Nov 15

    Google Scholar 

  58. Nederkoorn PJ, van der Graaf Y, Hunink MGM et al (2003) Duplex ultrasound and magnetic resonance angiography compared with digital subtraction angiography in carotid artery stenosis. Stroke 34:1324

    PubMed  Google Scholar 

  59. Heiserman JE, Dean BL, Hodak JA et al (1994) Neurologic complications of cerebral angiography. AJNR 15:1401–1407

    CAS  PubMed  Google Scholar 

  60. Jung HW, Chang KH, Choi DS et al (1995) Contrast-enhanced MR angiography for the diagnosis of intracranial vascular disease: optimal dose of gadopentate dimeglutamine. AJR Am J Roentgenol 165:1251–1255

    CAS  PubMed  Google Scholar 

  61. Mathews VP, Ulmer JL, White ML et al (1999) Depiction of intracranial vessels with MRA: utility of magnetization transfer saturation and gadolinium. J Comput Assist Tomogr 23:597–602

    CAS  PubMed  Google Scholar 

  62. Yang JJ, Hill MD, Morrish WF et al (2002) Comparison of pre and postcontrast 3D Time-of-Flight MR Angiography for the evaluation f distal intracranial branch occlusions in acute ischemic stroke. AJNR, April 23:557–567

    Google Scholar 

  63. Gorelick PB, Caplan LR, Hier DB et al (1984) Racial differences in the distribution of anterior circulation occlusive disease. Neuroradiology 34:54–59

    CAS  Google Scholar 

  64. Inizitari D, Hachinski VC, Taylor DW et al (1990) Racial differences in the anterior circulation in cerebrovascular disease. How much can be explained by risk factors? Arch Neurol 47:1080–1084

    Google Scholar 

  65. Griffths PD, Worthy S, Gholkar A (1996) Incidental intracranial vascular pathology in patients investigated for carotid stenosis. Neuroradiology 38:25–30

    Google Scholar 

  66. Wityk RJ, Lehman D, Klang M et al (1996) Race and sex differences in the distribution of cerebral atherosclerosis. Stroke 27:1974–1980

    CAS  PubMed  Google Scholar 

  67. Farb RI, Scott JN, Willinsky RA et al (2003) Intracranial venous system: gadolinium-enhanced three-dimensional MR venography with auto-triggered elliptic centric-ordered sequence—initial experience. Radiology. 226:203–109

    PubMed  Google Scholar 

  68. Juvela S, Porrai M, Heiskanen O (1993) Natural History of unruptured intracranial aneurysm: a long term follow-up study. J Neurosurg 79:174–182

    CAS  PubMed  Google Scholar 

  69. Schievink WI, Piepgras DG Wirth FP (1992) Ruptured of previously documented small asymptomatic saccular intracranial aneurysm. J Neurosurg 76:1019–1024

    CAS  PubMed  Google Scholar 

  70. Ronkainen A, Hernesnien J, Ryyananen M et al (1994) A 10% prevalence of asymptomatic familial intracranial aneurysms: preliminary report on 110 MRA studies in members of 21 Finnish familial intracranial aneurysm families. Neurosurgery 35:9–19

    Google Scholar 

  71. Rinne J, Hernesniemi J, Puranen M et al (1994) Multiple intracranial aneurysms in a defined population: prospective angiographic and clinical study. Neurosurgery 35:803–808

    CAS  PubMed  Google Scholar 

  72. Takahashi T, Suzuki S, Ohkuma H et al (1994) Aneurysms at a duplication of middle cerebral artery. AJNR 15:1166–1168

    CAS  PubMed  Google Scholar 

  73. Ahmad I, Tominaga T, Suzuki M et al (1994) Primitive trigeminal artery associated with cavernous aneurysm: case report. Surg Neurol 41:75–79

    CAS  PubMed  Google Scholar 

  74. Osborn AG (1994) Intracranial Aneurysms. In Diagnostic Neuroradiology. St Louis: Mosby, 248–283

    Google Scholar 

  75. Ruggieri PM, Poulos N, Masaryk TJ, et al (1994) Occult intracranial aneurysms in polycystic kidney disease: screening with MRA. Radiology 191:33–39

    CAS  PubMed  Google Scholar 

  76. Buckingham MJ, Crone KR, Ball WS et al (1998) Traumatic intracranial aneurysms in childhood: two cases and review of the literature. Neurosurgery 22:398–408

    Google Scholar 

  77. Barami K, Ko K (1994) Ruptured mycotic aneurysm as an intraparenchimal hemorrhage and nonadjacent acute subdural hematoma: case report and review of the literature. Surg Neurol 41:290–293

    CAS  PubMed  Google Scholar 

  78. Lawrence-Friedl D, Bauer KM (1992) Bilateral cortical blindness: an unusual presentation of bacterial endocarditis. An Emer Med 21:1502–1504

    CAS  Google Scholar 

  79. Gobin YP, Counord JL, Flaud P et al (1994) In vitro study of haemodynamics in a giant saccular aneurysm model: influence of flow dynamics in the parent vessel and effects of coil embolisation. Neuroradiology 36:530–536

    CAS  PubMed  Google Scholar 

  80. Grandin CB, Mathurin P, Duprez T et al (1998) Diagnosis of intracranial aneurysms: accuracy of MR angiography at 0,5 T. AJNR Am J Neuroradiol 19:245–252

    CAS  PubMed  Google Scholar 

  81. Harrison MJ, Johnson BA, Gardner GM et al (1997) Preliminary results on the management of unruptured intracranial aneurysms with magnetic resonance angiography and computed tomography angiography. Neurosurgery 40:947–955

    CAS  PubMed  Google Scholar 

  82. Huston J, Nichols DA, Luetmer PH et al (1994) Blinded prospective evaluation of sensitivity of MR angiography to known intracranial aneurysms: importance of aneurysm size. AJNR Am J Neuroradiol 15:1607–1614

    PubMed  Google Scholar 

  83. Chung TS, Joo JY, Lee SK et al (1999) Evaluation of cerebral aneurysms with high-resolution MR angiography using section interpolation technique: correlation with digital subtraction angiography. AJNR Am J Neuroradiol 20:229–235

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Atlas SW, Sheppard L, Goldberg HI et al (1997) Intracranial aneurysms: detection and characterization with MR angiography with use of an advanced postprocessing technique in a blinded-reader study. Radiology 203:807–14

    CAS  PubMed  Google Scholar 

  85. Brunereau L, Cottier JP, Sonier CB et al (1999) Prospective evaluation of time-of flight MR angiography in the follow-up of intracranial saccular aneurysms treated with Guglielmi detachable coils. J Comput Assist Tomogr 23:216–223

    CAS  PubMed  Google Scholar 

  86. Mori H, Aoki S, Okubo T et al (2002) Two dimensional thick-slice MR digital subtraction angiography in the assesment of small to medium-size intracranial arteriovenus malformations. Neuroradiology

    Google Scholar 

  87. Korogi Y, Takahashi M, Katada K et al (1999) Intracranial aneurysms: detection with three dimensional CT angiography with volume renderingcomparison with conventional angiographic and surgical findings. Radiology 211:497–506

    CAS  PubMed  Google Scholar 

  88. Korogi Y, Takahashi, Mabuchi N et al (1994) Intracranial aneurysm: diagnostic accuracy of threedimensional Fourier transform, time-of-flight MR angiography. Radiology 193:181–186

    CAS  PubMed  Google Scholar 

  89. Okahara M, Kiyosue H, Yamashita M et al (2002) Diagnostic accuracy of magnetic resonance angiography for cerebral aneurysms in correlation with 3D-digital subtraction angiographic images: a study of 133 aneurysms. Stroke 33:1803–8

    PubMed  Google Scholar 

  90. Kadota T, Hosomi N, Kuroda C et al (1997) [Unruptured intracranial aneurysms: evaluation with high-resolution MR angiography with magnetic transfer contrast (MTC) and tilted optimized nonsaturating excitation (TONE)]. Nippon Igaku Hoshasen Gakkai Zasshi 57:853–9

    CAS  PubMed  Google Scholar 

  91. Raaymakers TWM, Buys PC, Verbeeten B Jr et al (1999) MR Angiography as a screening tool for intracranial aneurysms: feasibility, test characteristics, and interobserver agreement. AJR 1469–1475

    Google Scholar 

  92. Ross JS, Masaryk TJ, Modic MT et al (1990) Intracranial aneurysms: evaluation by MR angiography. AJR 11:159–165

    Google Scholar 

  93. Jager HR, Ellamushi H, Moore EA et al (2000) Contrast-enhanced MR angiography of intracranial giant aneurysms. AJNR 21:1900–1907

    CAS  PubMed  Google Scholar 

  94. Rollen P, Sze G (1998) Small patent cerebral aneurysms: atypical appearences at 1,5-T MR imaging. Radiology 208:129–136

    Google Scholar 

  95. Strotzer M, Fellner C, Fraunhofer S et al (1998) Dedicated head-neck coil in MR angiography of the supra-aortic arteries from the aortic arch to the circle of Willis. Acta Radiol. 39:249–56

    CAS  PubMed  Google Scholar 

  96. Mallouhi A, Felber S, Chemelli A et al (2003) Detection and characterization of intracranial aneurysms with MR angiography: comparison of volume-rendering and maximum-intensity-projection algorithms. AJR Am J Roentgenol. Jan; 180(1):55–64

    Google Scholar 

  97. Anzalone N, Righi C, Simionato F et al (2000) Three-dimensional time-of-flight MR angiography in the evaluation of intracranial aneurysms treated with Guglielmi detachable coils. AJNR Am J Neuroradiol. 21:746–52

    CAS  PubMed  Google Scholar 

  98. Cottier JP, Bleuzen-Couthon A, Gallas S et al (2003) Intracranial aneurysms treated with Guglielmi detachable coils: is contrast material necessary in the follow-up with 3D time-of-flight MR angiography? AJNR Am J Neuroradiol. 24:1797–1803

    PubMed  Google Scholar 

  99. Yamada N, Hayashi K, Murao K et al (2004) Time-of-flight MR angiography targeted to coiled intracranial aneurysms is more sensitive to residual flow than is digital subtraction angiography. AJNR Am J Neuroradiol. 25:1154–1157

    PubMed  Google Scholar 

  100. McCormick WF (1966) The pathology of vascular (“arteriovenous”) malformations. J Neurosurg 24:807–816

    CAS  PubMed  Google Scholar 

  101. Spetzer RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurgery 65:476–483

    Google Scholar 

  102. Ondra S, Troupp H, Gorge Ed et al (1990) Natural history of symptomatic arteriovenous malformations of the brain: a 24 year followup assessment. J Neurosurg 73:387–391

    CAS  PubMed  Google Scholar 

  103. Ducreux D, Trystram D, Oppenheim C et al (2001) Diagnostic imaging of brain arteriovenus malformations. Neurochirurgie 47:190–200

    CAS  PubMed  Google Scholar 

  104. Nussel F, Wegmuller H, Huber P (1991) Comparison of magnetic resonance angiography, magnetic resonance imaging and conventional angiography in cerebral arteriovenus malformation. Neuroradiology 33:56–61

    CAS  PubMed  Google Scholar 

  105. Tanabe S, Honmou O, Minamida Y et al (2001) Advantages of T2 reversed fast spin-echo image and enhanced three-dimensional surface MR angiography for the diagnosis of cerebral arteriovenus malformations. Prog CI 23:165–175

    Google Scholar 

  106. Edelman RR, Wentz KU, Mattle HP et al (1989) Intracerebral arteriovenus malformations: evaluation with selective MR angiography and venography. Radiology 173:831–837

    CAS  PubMed  Google Scholar 

  107. Essig M, Engenhart R, Knopp MV et al (1996) Cerebral arteriovenous malformations: improved nidus demarcation by means of dynamic tagging MR-angiography. Magn Reson Imaging 14:227–233

    CAS  PubMed  Google Scholar 

  108. Noguchi K, Melhem ER, Kanazawa T (2004) Intracranial dural arteriovenous fistulas: evaluation with combined 3D time-of-flight MR angiography and MR digital subtraction angiography. AJR Am J Roentgenol. 182:183–90

    PubMed  Google Scholar 

  109. Takano K, Utsunomiya H, Ono H et al (1999) Dynamic contrast-enhanced subtraction MR angiography in intracranial vascular abnormalities. Eur Radiol 9:1909–1912

    CAS  PubMed  Google Scholar 

  110. Kauczor HU, Engenhart R, Layer G et al (1993) 3D TOF MR angiography of AVMs after radiosurgery. J Comput Assist Tomogr 17:184–190

    CAS  PubMed  Google Scholar 

  111. Lasjaunias O, Burrows P, Placet C (1986) Developmental venous anomalies (DVA): the so-called venous angioma, Neurosurg Rev 9:233–244

    CAS  PubMed  Google Scholar 

  112. Osterton B, Solymosi L (1993) MRA of cerebral developmental anomalies: its role in differential diagnosis, Neuroradiol 35:97–104

    Google Scholar 

  113. Robinson JR, Awad IA, Little JR (1991) Natural history of the cavernous angioma, J Neurosurg 75:709–714

    CAS  PubMed  Google Scholar 

  114. Rigamonti D, Hadley MN, Drayer BP et al (1988) Cerebral cavernous malformations: incidence and familial occurence. N Engl J Med 319:343–347

    CAS  PubMed  Google Scholar 

  115. Rigamonti D, Johnson PC, Spetzler RF et al (1991) Cavernous malformations and capillary telangectasia: a spectrum within a single pathological entity, Neurosurg 28:60–64

    CAS  Google Scholar 

  116. Willinek WA, Born M, Simon B et al (2003) Time-of-flight MR angiography: comparison of 3.0-T imaging and 1.5-T imaging-initial experience. Radiology 229:913–920

    PubMed  Google Scholar 

  117. Gibbs GF, Huston J 3rd, Bernstein MA et al (2004) Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-flight MR angiography. AJNR Am J Neuroradiol. 25:84–87

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Italia

About this chapter

Cite this chapter

Anzalone, N., Tartaro, A. (2005). Intracranial MR Angiography. In: Schneider, G., Prince, M.R., Meaney, J.F.M., Ho, V.B. (eds) Magnetic Resonance Angiography. Springer, Milano. https://doi.org/10.1007/88-470-0352-0_7

Download citation

  • DOI: https://doi.org/10.1007/88-470-0352-0_7

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0266-1

  • Online ISBN: 978-88-470-0352-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics