Skip to main content

Contrast Agents for MR Angiography: Current Status and Future Perspectives

  • Chapter
  • 1080 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Runge VM, Knopp MV (1999) Off-label use and reimbursement of contrast media in MR. JMRI 10:489–495

    CAS  PubMed  Google Scholar 

  2. Knopp MV, Lodemann KP, Kage U et al (2001) Administration of MR contrast agents outside of approved indications (off-label use). Radiologe 41:296–302

    CAS  PubMed  Google Scholar 

  3. Knopp MV, von Tengg-Kobligk H, Floemer F et al (1999) Contrast agents for MRA: future directions. JMRI 10:314–316

    CAS  PubMed  Google Scholar 

  4. de Haën C, Cabrini M, Akhnana L et al (1999) Gadobenate dimeglumine 0.5M solution for injection (MultiHance“): pharmaceutical formulation and physicochemical properties of a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr 23(Suppl. 1):S161–S168

    PubMed  Google Scholar 

  5. Grossman RI, Rubin DL, Hunter G et al (2000) Magnetic resonance imaging in patients with central nervous system pathology. A comparison of Opti-MARK (Gd-DTPA-BMEA) and Magnevist (Gd-DTPA). Invest Radiol 35:412–419

    CAS  PubMed  Google Scholar 

  6. Benner T, Reimer P, Erb G et al (2000) Cerebral MR perfusion imaging: first clinical application of a 1M gadolinium chelate (gadovist 1.0) in a double-blinded randomized dose-finding study. J Magn Reson Imaging 12:371–380

    CAS  PubMed  Google Scholar 

  7. Tombach B, Bremer C, Reimer P et al (2001) Renal tolerance of a neutral gadolinium chelate (gadobutrol) in patients with chronic renal failure: results of a randomized study. Radiology 218:651–657

    CAS  PubMed  Google Scholar 

  8. Prince MR, Erel HE, Lent RW et al (2003) Gadodiamide administration causes spurious hypocalcemia. Radiology 227:630–646

    Google Scholar 

  9. Doorenbos CJ, Ozyilmaz A, van Wijnen M (2003) Severe pseudohypocalcemia after gadolinium-enhanced magnetic resonance angiography. N Engl J Med. 349:817–818

    PubMed  Google Scholar 

  10. Kang HP, Scott MG, Joe BN et al (2004) Model for Predicting the Impact of Gadolinium on Plasma Calcium Measured by the o-Cresolphthalein Method. Clin Chem. 50:141–146

    Google Scholar 

  11. Normann PT, Froysa A, Svaland M (1995) Interference of gadodiamide injection (OMNISCAN) on the colorimetric determination of serum calcium, Scand J. Clin Lab Invest; 55:421–426

    CAS  Google Scholar 

  12. Lin J, Idee JM, Port M et al (1999) Interference of magnetic resonance imaging contrast agents with the serum calcium measurement technique using colorimetric reagents. J Pharm Biomed Anal. 21:931–43

    CAS  PubMed  Google Scholar 

  13. Goyan M, Ruehm SG, Debatin JF (2000) MR Angiography: the role of contrast agents. Eur J Radiol 34:247–256

    Google Scholar 

  14. Hany TF, Schmidt M, Hilfiker PR, et al (1998) Optimization of contrast dosage for gadolinium-enhanced 3D MRA of the pulmonary and renal arteries. Magn Reson Imaging 16:901–906

    CAS  PubMed  Google Scholar 

  15. Dong Q, Schoenberg SO, Carlos RC et al (1999) Diagnosis of renal vascular disease with MR angiography. Radiographics 19:1535–1554

    CAS  PubMed  Google Scholar 

  16. Leung DA, Hagspiel KD, Angle JF et al (2002) MR angiography of the renal arteries. Radiol Clin North Am 40:847–865

    PubMed  Google Scholar 

  17. Gibby WA, Gibby KA, Gibby WA (2004) Comparison of Gd DTPA-BMA (Omniscan) versus Gd HPDO3A (ProHance) retention in human bone tissue by Inductively Coupled Plasma Atomic Emission Spectroscopy. Invest Radiol 39:138–142

    PubMed  Google Scholar 

  18. Tweedle M (1992) Physicochemical properties of gadoteridol and other magnetic resonance contrast agents. Invest Radiol 27(Suppl 1):2–6

    CAS  Google Scholar 

  19. Leung DA, Hagspiel KD, Angle JF et al (2002) MR angiography of the renal arteries. Radiol Clin North Am 40:847–865

    PubMed  Google Scholar 

  20. Balzer JO, Loewe C, Davis K et al (2003) Safety of contrast-enhanced MR angiography employing gadobutrol 1.0 M as contrast material. Eur Radiol 13:2067–2074

    PubMed  Google Scholar 

  21. Goyen M, Herborn CU, Vogt FM, et al (2003) Using a 1 M Gd-chelate (gadobutrol) for total-body three-dimensional MR angiography: preliminary experience. J Magn Reson Imaging 17:565–571

    PubMed  Google Scholar 

  22. Goyen M, Lauenstein T, Herborn C et al (2001) 0.5 M Gd chelate (Magnevist) versus 1.0 M Gd chelate (Gadovist): dose-independent effect on image quality of pelvic three-dimensional MR-angiography. J Magn Reson Imaging 14:602–607

    CAS  PubMed  Google Scholar 

  23. Herborn C, Lauenstein T, Ruehm S et al (2003) Intraindividual comparison of gadopentetate dimeglumine, gadobenate dimeglumine and gadobutrol for pelvic 3D magnetic resonance angiography. Invest Radiol 38:27–33

    CAS  PubMed  Google Scholar 

  24. Hentsch A, Aschauer MA, Balzer JO, et al (2003) Gadobutrol-enhanced moving-table magnetic resonance angiography in patients with peripheral vascular disease: a prospective, multi-centre blinded comparison with digital subtraction angiography. Eur Radiol 13:2103–2114

    PubMed  Google Scholar 

  25. Herborn CU, Ajaj W, Goyen M et al (2004) Peripheral vasculature: whole-body MR angiography with midfemoral venous compression-initial experience. Radiology 230:872–878

    PubMed  Google Scholar 

  26. Fink C, Bock M, Kiessling F et al (2004) Time-resolved contrast-enhanced three-dimensional pulmonary MR-angiography: 1.0 M gadobutrol vs. 0.5 M gadopentetate dimeglumine. J Magn Reson Imaging 19:202–208

    PubMed  Google Scholar 

  27. von Tengg-Kobligk H, Floemer F, Knopp MV (2003) [Multiphasic MR angiography as an intra-individual comparison between the contrast agents Gd-DTPA, Gd-BOPTA, and Gd-BT-DO3A] Radiologe 43:171–178. In German

    Google Scholar 

  28. Cavagna F, Maggioni F, Castelli P et al (1997) Gadolinium chelates with weak binding to serum proteins. A new class of high-efficiency, general purpose contrast agents for magnetic resonance imaging. Invest Radiol 32:780–796

    CAS  PubMed  Google Scholar 

  29. Knopp M, Schoenberg S, Rehm C et al (2002) Assessment of Gadobenate Dimeglumine (Gd-BOPTA) for MR Angiography: Phase I Studies. Invest Radiol 37:706–715

    CAS  PubMed  Google Scholar 

  30. Völk M, Strotzer M, Lenhart M et al (2001) Renal time-resolved MR angiography: quantitative comparison of gadobenate dimeglumine and gadopentetate dimeglumine with different doses. Radiology 220:484–488

    PubMed  Google Scholar 

  31. Wikström J, Wasser MN, Pattynama PM, et al (2003) Gadobenate dimeglumine-enhanced magnetic resonance angiography of the pelvic arteries. Invest Radiol 38:504–515

    PubMed  Google Scholar 

  32. Kroencke TJ, Wasser MN, Pattynama PM et al (2002) Gadobenate dimeglumine-enhanced MR angiography of the abdominal aorta and renal arteries. AJR Am J Roentgenol 179:1573–158

    PubMed  Google Scholar 

  33. Prokop M, Schneider G, Vanzulli A et al (2005) Contrast-enhanced MR angiography of the renal arteries: blinded multicenter crossover comparison gadobenate dimeglumine and gadopentetate dimeglumine. Radiology (in press)

    Google Scholar 

  34. Pediconi F, Fraioli F, Catalano C et al (2003) Gadobenate dimeglumine (Gd-DTPA) vs gadopentetate dimeglumine (Gd-BOPTA) for contrast-enhanced magnetic resonance angiography (MRA): improvement in intravascular signal intensity and contrast to noise ratio. Radiol Med 106:87–93

    PubMed  Google Scholar 

  35. Anzalone N, Scomazzoni F, Castellano R et al (2005) Carotid artery stenosis: intra-individual correlations of unenhanced 3D-TOF-MR Angiography, contrast-enhanced MR Angiography, and digital subtraction angiography versus rotational angiography for detection and grading. Radiology (in press)

    Google Scholar 

  36. Knopp MV, Giesel FL, von Tengg-Kobligk H et al (2003) Contrast-enhanced MR Angiography of the Run-off Vasculature: Intraindividual comparison of gadobenate dimeglumine with gadopentetate dimeglumine. J Magn Reson Imaging 17:694–702

    PubMed  Google Scholar 

  37. Wyttenbach R, Gianella S, Alerci M et al (2003) Prospective Blinded Evaluation of Gd-DOTA-versus Gd-BOPTA-enhanced Peripheral MR Angiography, as Compared with Digital Subtraction Angiography. Radiology 227:261–269

    PubMed  Google Scholar 

  38. Herborn CU, Goyen M, Lauenstein TC, et al (2003) Comprehensive time-resolved MRI of peripheral vascular malformations Am J Roentgenol 181:729–735

    Google Scholar 

  39. Winterer JT, Scheffler K, Paul G et al (2000) Optimization of contrast-enhanced MR angiography of the hands with a timing bolus and elliptically reordered 3D pulse sequence J Comput Assisted Tomogr 24:903–908

    CAS  Google Scholar 

  40. Ruehm SG, Goyen M, Barkhausen J et al (2001) Rapid magnetic resonance angiography for detection of atherosclerosis. Lancet 357:1086–1091

    CAS  PubMed  Google Scholar 

  41. Goyen M, Herborn CU, Lauenstein TC et al (2002) Optimization of contrast dosage for gadobenate dimeglumine-enhanced high-resolution whole-body 3D magnetic resonance angiography Invest Radiol 37:263–268

    PubMed  Google Scholar 

  42. Goyen M, Quick HH, Debatin JF et al (2002) Whole-body three-dimensional MR angiography with a rolling table platform: initial clinical experience. Radiology 224:270–277

    PubMed  Google Scholar 

  43. Goyen M, Herborn CU, Kröger K et al (2003) Detection of atherosclerosis: systemic imaging for systemic disease with whole-body three-dimensional MR angiography — initial experience. Radiology 227:277–282

    PubMed  Google Scholar 

  44. Kirchin MA, Pirovano G, Venetianer C et al (2001) Safety assessment of gadobenate dimeglumine (Multihance,): extended clinical experience from phase I studies to post-marketing surveillance. J Magn Reson Imaging 14:281–294

    CAS  PubMed  Google Scholar 

  45. Huppertz A, Balzer T, Blakeborough A et al (2004) European EOB Study Group. Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology 230:266–275

    PubMed  Google Scholar 

  46. Lauffer R, Parmelee D, Dunham S et al (1998) MS-325: albumin-targeted contrast agent for MR angiography. Radiology 207:529–538

    CAS  PubMed  Google Scholar 

  47. Grist T, Korosec F, Peters D et al (1998) Steady-state and dynamic MR angiography with MS-325: initial experience in humans. Radiology 207:539–544

    CAS  PubMed  Google Scholar 

  48. Perreault P, Edelman MA, Baum RA et al (2003) MR angiography with gadofosveset trisodium for peripheral vascular disease: phase II trial. Radiology 229:811–820

    PubMed  Google Scholar 

  49. Caravan P, Cloutier NJ, Greenfield MT et al (2002) The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc. 124:3152–3162

    CAS  PubMed  Google Scholar 

  50. Bluemke D, Stillman A, Bis K et al (2001) Carotid MR angiography: phase II study of safety and efficacy of MS-325. Radiology 219:114–122

    CAS  PubMed  Google Scholar 

  51. Stuber M, Botnar RM, Danias PG et al (1999) Contrast agent-enhanced, free-breathing, three-dimensional coronary magnetic resonance angiography. J Magn Reson Imaging 10:790–799

    CAS  PubMed  Google Scholar 

  52. Kraitchman DL, Chin BB, Heldman AW et al (2002) MRI detection of myocardial perfusion defects due to coronary artery stenosis with MS-325. J Magn Reson Imaging 15:149–158

    PubMed  Google Scholar 

  53. Cavagna FM, Anelli PL, Lorusso V et al (2001) B-22956, a new intravascular contrast agent for MR coronary angiography. Proc of the Int. Soc. for Magnetic Resonance in Medicine, p 519 (Abstract)

    Google Scholar 

  54. La Noce A, Stoelben S, Scheffler K et al (2002) B22956/1, a new intravascular contrast agent for MRI: first administration to humans-preliminary results. Acad Radiol 9[Suppl]:S404–406

    PubMed  Google Scholar 

  55. Cavagna FM, La Noce A, Maggioni F, et al (2002) MR Coronary Angiography with the New Intravascular Contrast Agent B-22956/1: First Human Experience. Proc of the Int. Soc. for Magnetic Resonance in Medicine, p 114 (Abstract)

    Google Scholar 

  56. Huber M, Paetsch I, Schnackenburg B, et al (2003) Performance of a new gadolinium-based intravascular contrast agent in free-breathing inversion-recovery 3D coronary MRA. Magn Reson Med 49:115–121

    PubMed  Google Scholar 

  57. Paetsch I, Huber M, Bornstedt A et al(2004) Improved 3D free-breathing coronary MRA using gadocoletic acid (B-22956) for intravascular contrast enhancement. J Magn Reson Imaging 20:288–293

    PubMed  Google Scholar 

  58. Gaillard S, Kubiak C, Stolz C et al (2002) Safety and pharmacokinetics of p792, a new blood-pool agent: results of clinical testing in nonpatient volunteers. Invest Radiol 37:161–166

    CAS  PubMed  Google Scholar 

  59. Taupitz M, Schnorr J, Wagner S et al (2001) Coronary magnetic resonance angiography: experimental evaluation of the new rapid clearance blood pool contrast medium P792. Magn Reson Med 46:932–938

    CAS  PubMed  Google Scholar 

  60. Dong Q, Hurst D, Weinmann H et al (1998) Magnetic resonance angiography with gadomer-17. An animal study original investigation. Invest Radiol 33:699–708

    CAS  PubMed  Google Scholar 

  61. Herborn CU, Barkhausen J, Paetsch I et al (2003) Coronary arteries: contrast-enhanced MR imaging with SH L 643A-experience in 12 volunteers. Radiology 229:217–223

    PubMed  Google Scholar 

  62. Port M, Corot C, Raynal I et al (2001) Physicochemical and biological evaluation of P792, a rapid-clearance blood-pool agent for magnetic resonance imaging. Invest Radiol 36:445–454

    CAS  PubMed  Google Scholar 

  63. Reimer P, Bremer C, Allkemper T et al (2004) Myocardial perfusion and MR angiography of chest with SH U 555 C: results of placebo-controlled clinical phase I study. Radiology 231:474–481

    PubMed  Google Scholar 

  64. Weishaupt D, Ruhm S, Binkert C et al (2000) Equilibrium-phase MR angiography of the aortoiliac and renal arteries using a blood pool contrast agent. Am J Roentgenol 175:189–195

    CAS  Google Scholar 

  65. Taylor A, Panting J, Keegan J et al (1999) Safety and preliminary findings with the intravascular contrast agent NC100150 injection for MR coronary angiography. J Magn Reson Imaging 9:220–227

    CAS  PubMed  Google Scholar 

  66. Bachmann R, Conrad R, Kreft B et al (2002) Evaluation of a new ultrasmall superparamagnetic iron oxide contrast agent Clariscan, (NC100150) for MRI of renal perfusion: experimental study in an animal model. J Magn Reson Imaging 16:190–195

    PubMed  Google Scholar 

  67. Reimer P, Allkemper T, Matuszewski L et al (1999) Contrast-enhanced 3D-MRA of the upper abdomen with a bolus-injectable SPIO (SH U 555 A). J Magn Reson Imaging 10:65–71

    CAS  PubMed  Google Scholar 

  68. Mayo-Smith W, Saini S, Slater G et al (1996) MR contrast material for vascular enhancement: value of superparamagnetic iron oxide. Am J Roentgenol 166:73–77

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Italia

About this chapter

Cite this chapter

Knopp, M.V., Kirchin, M.A. (2005). Contrast Agents for MR Angiography: Current Status and Future Perspectives. In: Schneider, G., Prince, M.R., Meaney, J.F.M., Ho, V.B. (eds) Magnetic Resonance Angiography. Springer, Milano. https://doi.org/10.1007/88-470-0352-0_5

Download citation

  • DOI: https://doi.org/10.1007/88-470-0352-0_5

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0266-1

  • Online ISBN: 978-88-470-0352-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics