Skip to main content

Clinical implications and conclusions

ARDS becomes a systemic disease in association with mechanical ventilation. There is an increasing amount of evidence in the literature showing that mechanical ventilation has a significant impacton the remote organ systems in ARDS. Research in VILI-associated MODS has focussed on the mechanisms of an up-regulated and imbalanced systemic inflammatory response and increased rates of apoptosis in the lungs and the remote organs as well as on impaired global and regional haemodynamics. Cellular and molecular biology research has suggested key elements in this context that may serve as therapeutic targets for future treatment of patients with ARDS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N. Engl. J Med. 342(18):1334–1349

    Article  PubMed  CAS  Google Scholar 

  2. Vincent JL, Sakr Y, Ranieri VM (2003) Epidemiology and outcome of acute respiratory failure in intensive care unit patients. Crit Care Med. 31:S296–S299

    Article  PubMed  CAS  Google Scholar 

  3. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342(18):1301–1308

    Article  Google Scholar 

  4. Brienza N, Revelly JP, Ayuse T et al (1995) Effects of PEEP on liver arterial and venous blood flows. Am J Respir Crit Care Med 152(2):504–510

    PubMed  CAS  Google Scholar 

  5. Fessler HE, Brower RG, Wise RA et al (1991) Effects of positive end-expiratory pressure on the gradient for venous return. Am Rev Respir Dis 143(1):19–24

    PubMed  CAS  Google Scholar 

  6. Ranieri VM, Mascia L, Fiore T et al (1995) Cardiorespiratory effects of positive end-expiratory pressure during progressive tidal volume reduction (permissive hypercapnia) in patients with acute respiratory distress syndrome. Anesthesiology 83(4):710–720

    Article  PubMed  CAS  Google Scholar 

  7. Robotham JL, Lixfeld W, Holland L et al (1980) The effects of positive end-expiratory pressure on right and left ventricular performance. Am Rev Respir Dis 121(4):677–683

    PubMed  CAS  Google Scholar 

  8. Kiiski R, Takala J (1994) Hypermetabolism and efficiency of CO2 removal in acute respiratory failure. Chest 105(4):1198–1203

    PubMed  CAS  Google Scholar 

  9. Monchi M, Bellenfant F, Cariou A et al (1998) Early predictive factors of survival in the acute respiratory distress syndrome. A multivariate analysis. Am J Respir Crit Care Med 158(4):1076–1081

    PubMed  CAS  Google Scholar 

  10. Vieillard-Baron A, Loubieres Y, Schmitt JM et al (1999) Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol 87(5):1644–1650

    PubMed  CAS  Google Scholar 

  11. Vieillard-Baron A, Schmitt JM, Augarde R et al (2001) Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med 29(8):1551–1555

    Article  PubMed  CAS  Google Scholar 

  12. Schmitt JM, Vieillard-Baron A, Augarde R et al (2001) Positive end-expiratory pressure titration in acute respiratory distress syndrome patients: impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements. Crit Care Med 29(6):1154–1158

    Article  PubMed  CAS  Google Scholar 

  13. Liu M, Tanswell AK, Post M (1999) Mechanical force-induced signal transduction in lung cells. Am J Physiol 277(4 Pt 1):L667–L683

    PubMed  CAS  Google Scholar 

  14. Tremblay L, Valenza F, Ribeiro SP et al (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99(5):944–952

    PubMed  CAS  Google Scholar 

  15. Gurkan OU, O’Donnell C, Brower R et al (2003) Differential effects of mechanical ventilatory strategy on lung injury and systemic organ inflammation in mice. Am J Physiol Lung Cell Mol Physiol 285(3):L710–L718

    PubMed  CAS  Google Scholar 

  16. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111):1124–1127

    Article  PubMed  CAS  Google Scholar 

  17. Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148(5):1194–1203

    PubMed  CAS  Google Scholar 

  18. Parker JC, Ivey CL, Tucker JA (1998) Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs. J Appl Physiol 84(4):1113–1118

    PubMed  CAS  Google Scholar 

  19. Waters CM, Ridge KM, Sunio G et al (1999) Mechanical stretching of alveolar epithelial cells increases Na(+)-K(+)-ATPase activity. J Appl Physiol 87(2):715–721

    PubMed  CAS  Google Scholar 

  20. Grembowicz KP, Sprague D, McNeil PL (1999) Temporary disruption of the plasma membrane is required for c-fos expression in response to mechanical stress. Mol Biol Cell 10(4):1247–1257

    PubMed  CAS  Google Scholar 

  21. Hinman LE, Beilman GJ, Groehler KE et al (1997) Wound-induced calcium waves in alveolar type II cells. Am J Physiol 273(6 Pt 1):L1242–L1248

    PubMed  CAS  Google Scholar 

  22. Bhullar IS, Li YS, Miao H et al (1998) Fluid shear stress activation of IkappaB kinase is integrin-dependent. J Biol Chem 273(46):30544–30549

    Article  PubMed  CAS  Google Scholar 

  23. Hubmayr RD, Shore SA, Fredberg JJ et al (1996) Pharmacological activation changes stiffness of cultured human airway smooth muscle cells. Am J Physiol 271(5 Pt 1):C1660–C1668

    PubMed  CAS  Google Scholar 

  24. Vlahakis NE, Schroeder MA, Limper AH et al (1999) Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol 277(1 Pt 1):L167–L173

    PubMed  CAS  Google Scholar 

  25. Windsor AC, Walsh CJ, Mullen PG et al (1993) Tumor necrosis factor-alpha blockade prevents neutrophil CD18 receptor upregulation and attenuates acute lung injury in porcine sepsis without inhibition of neutrophil oxygen radical generation. J Clin Invest 91(4):1459–1468

    Article  PubMed  CAS  Google Scholar 

  26. McRitchie DI, Isowa N, Edelson JD et al (2000) Production of tumour necrosis factor alpha by primary cultured rat alveolar epithelial cells. Cytokine 12(6):644–654

    Article  PubMed  CAS  Google Scholar 

  27. Tremblay LN, Miatto D, Hamid Q et al (2002) Injurious ventilation induces widespread pulmonary epithelial expression of tumor necrosis factor-alpha and interleukin-6 messenger RNA. Crit Care Med 30(8):1693–1700

    Article  PubMed  CAS  Google Scholar 

  28. Pugin J, Dunn I, Jolliet P et al (1998) Activation of human macrophages by mechanical ventilation in vitro. Am J Physiol 275(6 Pt 1):L1040–L1050

    PubMed  CAS  Google Scholar 

  29. Zhang H, Downey GP, Suter PM et al (2002) Conventional mechanical ventilation is associated with bronchoalveolar lavage-induced activation of polymorphonuclear leukocytes: a possible mechanism to explain the systemic consequences of ventilator-induced lung injury in patients with ARDS. Anesthesiology 97(6):1426–1433

    Article  PubMed  Google Scholar 

  30. Chollet-Martin S, Jourdain B, Gibert C et al (1996) Interactions between neutrophils and cytokines in blood and alveolar spaces during ARDS. Am J Respir Crit Care Med 154(3 Pt 1):594–601

    PubMed  CAS  Google Scholar 

  31. Lentsch AB, Czermak BJ, Bless NM et al (1999) Essential role of alveolar macrophages in intrapulmonary activation of NF-kappa B. Am J Respir Cell Mol Biol 20(4):692–698

    PubMed  CAS  Google Scholar 

  32. Whitehead TC, Zhang H, Mullen B et al (2004) Effect of mechanical ventilation on cytokine response to intratracheal lipopolysaccharide. Anesthesiology 101(1):52–58

    Article  PubMed  CAS  Google Scholar 

  33. Steinberg KP, Milberg JA, Martin TR et al (1994) Evolution of bronchoalveolar cell populations in the adult respiratory distress syndrome. Am J Respir Crit Care Med 150(1):113–122

    PubMed  CAS  Google Scholar 

  34. Miller EJ, Cohen AB, Matthay MA (1996) Increased interleukin-8 concentrations in the pulmonary edema fluid of patients with acute respiratory distress syndrome from sepsis. Crit Care Med 24(9):1448–1454

    Article  PubMed  CAS  Google Scholar 

  35. Azoulay E, Darmon M, Delclaux C et al (2002) Deterioration of previous acute lung injury during neutropenia recovery. Crit Care Med 30(4):781–786

    Article  PubMed  Google Scholar 

  36. Abraham E (2003) Neutrophils and acute lung injury. Crit Care Med 31(4 Suppl):S195–S199

    Article  PubMed  Google Scholar 

  37. Tremblay LN, Slutsky AS (1998) Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians 110(6):482–488

    PubMed  CAS  Google Scholar 

  38. Ranieri VM, Suter PM, Tortorella C et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282(1):54–61

    Article  PubMed  CAS  Google Scholar 

  39. Goodman RB, Strieter RM, Martin DP et al (1996) Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome. Am J Respir Crit Care Med 154(3 Pt 1):602–611

    PubMed  CAS  Google Scholar 

  40. Meduri GU, Headley S, Kohler G et al (1995) Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time. Chest 107(4):1062–1073

    PubMed  CAS  Google Scholar 

  41. Meduri GU, Kohler G, Headley S et al (1995) Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest 108(5):1303–1314

    PubMed  CAS  Google Scholar 

  42. Ranieri VM, Giunta F, Suter PM et al (2000) Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA 284(1):43–44

    Article  PubMed  CAS  Google Scholar 

  43. Imai Y, Kawano T, Miyasaka K et al (1994) Inflammatory chemical mediators during conventional ventilation and during high frequency oscillatory ventilation. Am J Respir Crit Care Med 150(6 Pt 1):1550–1554

    PubMed  CAS  Google Scholar 

  44. Takata M, Abe J, Tanaka H et al (1997) Intraalveolar expression of tumor necrosis factor-alpha gene during conventional and high-frequency ventilation. Am J Respir Crit Care Med 156(1):272–279

    PubMed  CAS  Google Scholar 

  45. Chiumello D, Pristine G, Slutsky AS (1999) Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med 160(1):109–116

    PubMed  CAS  Google Scholar 

  46. Guery BP, Welsh DA, Viget NB et al (2003) Ventilation-induced lung injury is associated with an increase in gut permeability. Shock 19(6):559–563

    Article  PubMed  Google Scholar 

  47. Imai Y, Kawano T, Iwamoto S et al (1999) Intratracheal anti-tumor necrosis factor-alpha antibody attenuates ventilator-induced lung injury in rabbits. J Appl Physiol 87(2):510–515

    PubMed  CAS  Google Scholar 

  48. Plotz FB, Slutsky AS, Van Vught AJ et al (2004) Ventilator-induced lung injury and multiple system organ failure: a critical review of facts and hypotheses. Intensive Care Med

    Google Scholar 

  49. Munford RS, Pugin J (2001) The crucial role of systemic responses in the innate (non-adaptive) host defense. J Endotoxin Res 7(4):327–332

    Article  PubMed  CAS  Google Scholar 

  50. Hetts SW (1998) To die or not to die: an overview of apoptosis and its role in disease. JAMA 279(4):300–307

    Article  PubMed  CAS  Google Scholar 

  51. Matute-Bello G, Liles WC, Steinberg KP et al (1999) Soluble Fas ligand induces epithelial cell apoptosis in humans with acute lung injury (ARDS). J Immunol 163(4):2217–2225

    PubMed  CAS  Google Scholar 

  52. Papathanassoglou ED, Moynihan JA, Vermillion DL et al (2000) Soluble fas levels correlate with multiple organ dysfunction severity, survival and nitrate levels, but not with cellular apoptotic markers in critically ill patients. Shock 14(2):107–112

    Article  PubMed  CAS  Google Scholar 

  53. Albertine KH, Soulier MF, Wang Z et al (2002) Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am J Pathol 161(5):1783–1796

    PubMed  CAS  Google Scholar 

  54. Imai Y, Parodo J, Kajikawa O et al (2003) Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 289(16):2104–2112

    Article  PubMed  Google Scholar 

  55. Esteban A, Alia I, Gordo F et al (2000) Prospective randomized trial comparing pressure-controlled ventilation and volume-controlled ventilation in ARDS. For the Spanish Lung Failure Collaborative Group. Chest 117(6):1690–1696

    Article  PubMed  CAS  Google Scholar 

  56. Brun-Buisson C, Minelli C, Bertolini G et al (2004) Epidemiology and outcome of acute lung injury in European intensive care units. Results from the ALIVE study. Intensive Care Med 30(1):51–61

    Article  PubMed  Google Scholar 

  57. Annat G, Viale JP, Bui XB et al (1983) Effect of PEEP ventilation on renal function, plasma renin, aldosterone, neurophysins and urinary ADH, and prostaglandins. Anesthesiology 58(2):136–141

    Article  PubMed  CAS  Google Scholar 

  58. Qvist J, Pontoppidan H, Wilson RS et al (1975) Hemodynamic responses to mechanical ventilation with PEEP: the effect of hypervolemia. Anesthesiology 42(1):45–55

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Italia

About this paper

Cite this paper

Brander, L., Slutsky, A.S., Zhang, H. (2005). Is the acute respiratory distress syndrome a systemic disease?. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/88-470-0351-2_35

Download citation

  • DOI: https://doi.org/10.1007/88-470-0351-2_35

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0288-3

  • Online ISBN: 978-88-470-0351-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics