Detecting Structural Changes in the Italian Stock Market through Complexity

  • Antonio Abatemarco
Conference paper
Part of the New Economic Windows book series (NEW)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmadi, H.: 1990, Testability of the Arbitrage Pricing Theory by Neural Networks, Proceedings of the IEEE Interantional Conference of Neural Networks.Google Scholar
  2. Alfano, M. and Salzano, M.: 1998, The effect of public sector: an nn approach in a view of complexit, Neural Nets — Proceedings of the 10th Italian Workshop of Neural Nets, m. marinaro, r. tagliaferri edn, Springer Verlag.Google Scholar
  3. Andrews, D.: 1993, Tests for parameter instability and structural change with unknown change point, Econometrica 61.Google Scholar
  4. Cooper, R.: 1988, Coordinating coordination failures in keynesian models, Quarterly Journal of Economics 103, 441–463.zbMATHMathSciNetGoogle Scholar
  5. Crowder, W.J., W. M.: 1999, Are tax effects important in the long-run fisher relationship?, Journal of Finance 54(1).Google Scholar
  6. Day, S. and Davenport, M.: 1993, Continuous-time temporal back-propagation with adaptive time delays, IEEE trans. Neural Networks 4(2).Google Scholar
  7. Evans, M.: 1991, Discovering the link between inflation rates and inflation uncertainty, Journal of Money, Credit and Banking 23.Google Scholar
  8. Farmer, D.: 1987, Predicting chaotic time series, Ohys. Rev. Lett. 59.Google Scholar
  9. Fraser, A. and Swinney, H.: 1986, Independent coordinates for strange attractors from mutual information, Phys. Rev. Lett. A 33.Google Scholar
  10. Guizzardi, A. and Paruolo, P.: 1997, Nonlinearità nei fondamentali dei rendimenti azionari italiani, Ricerche Applicati e Metodi per la Politica Economica, Banca d’Italia.Google Scholar
  11. Kamijo, K.-I. and Tanigawa, T.: 1990, Stock Price Pattern Recognition: a Recurrent Neural Network Approach, Proceedings of the International Conference on Neural Networs, San Diego.Google Scholar
  12. Kim, K.-J. and Han, I.: 2000, Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index, Expert Systems with Applications 19.Google Scholar
  13. Kim, S.-S.: 1998, Time-delay recurrent neural network for temporal correlations and prediction, Neurocomputing 20.Google Scholar
  14. Lin, D.T., D. J. L. P.: 1992, Adaptive time-delay neural network for temporal correlations and prediction, SPIE Intelligent Robots and Computer Vision XI: Biological, Neural Net, and 3-D Method.Google Scholar
  15. Minsky, H.: 1977, A Theory of Systemic Fragility, John Wiley and Sons.Google Scholar
  16. Minsky, H.: 1986, Stabilizing an Unstable Economy, Yale University Press.Google Scholar
  17. Moody, J. and Darken, C.: 1989, Fast learning in networks of locally-tuned processing units, Neural Comput. 1(2).Google Scholar
  18. Muellbauer, J., a. P. R.: 1978, Macroeconomic models with quantity rationing, The Economic Journal pp. 788–821.Google Scholar
  19. Stock, J. and Watson, M.: 1996, Evidence on structural instability in macroeconomic time series relations, Journal of Business and Economic Statistics 14.Google Scholar
  20. Takens, F.: 1981, Detecting Strange Attractors in Turbulence, Springer-Berlin.Google Scholar
  21. Trývez, F.: 1995, Level shifts, temporary changes and forecasting, Journal of Forecasting 14.Google Scholar
  22. Tsay, R.: 1988, Outliers, level shifts, and variance changes in time series, Journal of Forecasting 7.Google Scholar
  23. Vercelli, A.: 2000, Structural financial instability and cyclical fluctuations, Structural Change and Economic Dynamics 11.Google Scholar
  24. Wolf, A., Swift, J., Swinney, L. and Vastano, A.: 1985, Determining lyapunov exponents from a time series, Physica D 16.Google Scholar

Copyright information

© Springer-Verlag Italia 2005

Authors and Affiliations

  • Antonio Abatemarco
    • 1
  1. 1.Department of Economics and StatisticsUniversity of SalernoSalernoItaly

Personalised recommendations