Quasilinear Aggregation Operators and Preference Functionals

  • Livia D’Apuzzo
Conference paper
Part of the New Economic Windows book series (NEW)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aczel, J.: 1966, Lectures on Functional Equations and their Application, New York and London Academic Press.Google Scholar
  2. Aczel, J. and Saaty, T.: 1983, Procedures for synthesizing ratio judgements, Journal Math. Psycology 27, 93–102.MathSciNetCrossRefGoogle Scholar
  3. Allais, M.: 1953, Le comportment de l’homme rationnel devant le risque: critique des postulats et axiomes de l’école américaine, Econometrica 21, 503–546.zbMATHMathSciNetCrossRefGoogle Scholar
  4. Basile, L. and D’Apuzzo, L.: 1996, Ordering for classes of aggregation operators, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 4.2, 145–156.MathSciNetCrossRefGoogle Scholar
  5. Bridges, D. and Mehta, G.: 1995, Representation of preference ordering, Springer-Verlag.Google Scholar
  6. Chew, S.: 1983, A generalization of the quasilinear mean with application to the measurement of income inequality and decision theory resolving the allais paradox, Econometrica 51, 1065–1092.zbMATHMathSciNetCrossRefGoogle Scholar
  7. Choquet, G.: 1953-54, Theory of capacity, Ann. Ist. Fourier, Grenoble 5, 131–292.MathSciNetGoogle Scholar
  8. D’Apuzzo, L. and Squillante, M.: 2002, Representation of preferences by quasi-linear means, Annals of Mathematics and Artificial Intellingence 35(Nos. 1-4).Google Scholar
  9. D’Apuzzo, L., Squillante, M. and Ventre, A.: 19,Aczél6690, Extending aggregation operators for multicriteria decision making, in J. K. M. Fedrizzi (ed.), Multi-person Decision Making Models using Fuzzy Sets and Possibility Theory, Kluwer Publishing Company.Google Scholar
  10. deFinetti, B.: 1931, Sul concetto di media, G.I.I.A. II, 369–396.Google Scholar
  11. Hansson, B.: 1997, Risk aversion as a problem of conjoint measurement, in G (ed.), Decision, Probability and Utility, Cambridge University Press.Google Scholar
  12. Hardy, G., Littlewood, J. and Polya, G.: 1952, Inequalities, Cambridge Sity Press.Google Scholar
  13. Holzer, S.: 1992, Sulla trattazione assiomatica delle medie, Atti del Sedicesimo Convegno A.M.A.S.E.S..Google Scholar
  14. Kahneman, D. and Tversky, A.: 1979, Prospect theory: an analysis of decision under risk, Econometrica 47, 263–291.CrossRefGoogle Scholar
  15. Machina, M.: 1982, Expected utility analysis without the independence axiom, Econometrica 50, 277–323.zbMATHMathSciNetCrossRefGoogle Scholar
  16. Machina, M.: 1987, Choice under uncertainty: Problems solved and unsolved, Economic Perspectives 1(1), 121–154.Google Scholar
  17. Munier, B.: 1998, Two stage rationality under risk: Experimental results and perspectives, Rivista di Matematica per le Scienze Economiche e Sociali 21(1-2), 3–23.ADSMathSciNetGoogle Scholar
  18. Saaty, T.: 1980, The Analytic Hierarchy Process, McGraw-Hill.Google Scholar
  19. Schmidt, U.: 1998, A measurement of the certainty effect, Journal of Mathematical Psycology 42, 32–47.zbMATHCrossRefGoogle Scholar
  20. Skala, H.: 1991, Concerning ordered weighted averaging aggregation operators, Statistical Papers 32, 35–44.zbMATHMathSciNetCrossRefGoogle Scholar
  21. Ventre, A.: 1996, Decomposable expected utility, Rivista di Matematica Univ. Parma 5(5), 1–11.zbMATHMathSciNetGoogle Scholar
  22. Yaari, M.: 1987, The dual theory of choice under risk, Econometrica 55, 95–115.zbMATHMathSciNetCrossRefGoogle Scholar
  23. Yager, R.: 1988, On ordered weighted averaging aggregation operators in multicriteria decision making, I.E.E.E., transactions on Systems, Man, and Cybernetics 18(1), 183–190.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2005

Authors and Affiliations

  • Livia D’Apuzzo
    • 1
  1. 1.Department of ArchitectureUniversity of Naples “Federico II”NaplesItaly

Personalised recommendations