Skip to main content

Automatic Target Recognition in Multispectral and Hyperspectral Imagery Via Joint Transform Correlation

  • Chapter
  • First Online:
Wide Area Surveillance

Part of the book series: Augmented Vision and Reality ((Augment Vis Real,volume 6))

Abstract

In this chapter, we review the recent trends and advancement on automatic target recognition (ATR) in multispectral and hyperspectral imagery via joint transform correlation. In particular, we discuss the one-dimensional spectral fringe-adjusted joint transform (SFJTC) correlation based technique for detecting very small targets involving only a few pixels in multispectral and hyperspectral imagery (HSI). In this technique, spectral signatures from the unknown HSI are correlated with the reference signature using the SFJTC technique. This technique can detect both single and/or multiple desired targets in constant time while accommodating the in-plane and out-of-plane distortions. Furthermore, a new metric, called the peak-to-clutter mean (PCM), is introduced that provides sharp and high correlation peaks corresponding to targets and makes the proposed technique intensity invariant. This technique is also applied to the discrete wavelet transform (DWT) coefficients of the multispectral and HSI data in order to improve the detection performance, especially in the presence of noise or spectral variability. Detection results in the form of receiver-operating-characteristic (ROC) curves and the area under the ROC curves (AUROC) are used to show the performance of the proposed algorithms against other algorithms proposed in the literature. Test results using real life hyperspectral image data cubes are presented to verify the effectiveness of these proposed techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slater, D., Healey, G.: A spectral change space representation for invariant material tracking in hyperspectral images. Proc SPIE 3753, 308–317 (1999)

    Article  Google Scholar 

  2. Manolakis, D., Marden, D., Shaw, G.: Hyperspectral image processing for automatic target detection applications. Linc Lab J 14, 79–114 (2003)

    Google Scholar 

  3. Manolakis, D., Shaw, G.: Detection algorithms for hyperspectral imaging applications. IEEE Signal Process. Mag. 19, 29–43 (2002)

    Article  Google Scholar 

  4. Mahalanobis, A., Muise, R.R., Stanfill, S.R.: Quadratic correlation filter design methodology for target detection and surveillance applications. Appl. Opt. 43, 5198–5205 (2004)

    Article  Google Scholar 

  5. Yamany, S.M., Farag, A.A., Hsu, S.-Y.: A fuzzy hyperspectral classifier for automatic target recognition (ATR) systems. Pattern Recogn. Lett. 20, 1431–1438 (1999)

    Article  Google Scholar 

  6. Manolakis, D.: Taxonomy of detection algorithms for hyperspectral imaging applications. Opt. Eng. 44(6), 1–11 (2005)

    Article  Google Scholar 

  7. Kay, S.M.: Fundamentals of statistical signal processing. Englewood Cliffs, New Jersey (1998)

    Google Scholar 

  8. Fisher, R.A.: Multiple measures in taxonomic problems. Ann. Eugenics 7, 179–188 (1936)

    Article  Google Scholar 

  9. Reed, I.S., Yu, X.: Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans Acoust. Speech, Signal Process. 38, 1760–1770 (1990)

    Article  Google Scholar 

  10. Center for the Study of Earth from Space (CSES), SIPS User’s Guide, The spectral image processing system, vol. 1.1, pp. 74. University of Colorado, Boulder, (1992)

    Google Scholar 

  11. Weaver, C.S., Goodman, J.W.: A technique for optically convolving two functions. Appl. Opt. 5, 1248–1249 (1966)

    Article  Google Scholar 

  12. Yu, F.T.S., Ludman, J.E.: Microcomputer based programmable joint transform correlator for automatic pattern recognition and identification. Opt. Lett. 11, 395–397 (1986)

    Article  Google Scholar 

  13. Javidi, B., Tang, Q.: Chirp-encoded joint transform correlators with a single input plane. Appl. Opt. 33, 227–230 (1994)

    Article  Google Scholar 

  14. Alam, M.S., Goh S. F. Dacharaju, S.: Three-dimensional color pattern recognition using fringe-adjusted joint transform correlation with CIELab coordinates, accepted for publication, IEEE Trans. Instrum. Meas. 58, 2176-2184 (2009)

    Google Scholar 

  15. Alam, M.S., Karim, M.A.: Fringe-adjusted joint transform correlation. Appl. Opt. 32, 4344–4350 (1993)

    Article  Google Scholar 

  16. Alam, M.S., Haque, M., Khan, J.F., Kettani, H.: Fringe-adjusted joint transform correlator based target detection and tracking in forward looking nfrared image sequence. Opt. Eng. 43, 1407–1413 (2004)

    Article  Google Scholar 

  17. Islam, M.N., Alam, M.S. Karim, M.A.: Pattern recognition in hyperspectral imagery using 1D shifted phase-encoded joint transform correlation. J. Opt. Commun. 281, 4854–4861 (2008)

    Google Scholar 

  18. Alam, M.S., Ochilov, S.: Target detection in hyperspectral imagery using one-dimensional fringe-adjusted joint transform correlation. Proc. SPIE 6245, 624505 (2006)

    Article  Google Scholar 

  19. Alam, M.S., Bal, A., Horache, E.H., Goh, S.F., Loo, C.H., Regula, S.P., Sharma, A.: Metrics for evaluating the performance of joint-transform-correlation-based target recognition and tracking algorithms. Opt. Eng. 44, 067005 (2005)

    Article  Google Scholar 

  20. Wang, Q., Guo, Q., Zhou, J., Lin, Q.: Nonlinear joint fractional Fourier transform correlation for target detection in hyperspectral image. Opt. Laser Technol 44, 1897–1904 (2012)

    Google Scholar 

  21. Jutamulia, S., Storti, G.M., Gregory, D.A., Kirsch, J.C.: Illumination-independent high-efficiency joint transform correlator. J. Appl. Opt. 30, 4173–4175 (1991)

    Article  Google Scholar 

  22. Alam, M.S., Ochilov, S.: Spectral fringe-adjusted joint transform correlation. Appl. Opt. 49, B18–B25 (2010)

    Article  Google Scholar 

  23. Alam, M.S., Karim, M.A.: Multiple target detection using a modified fringe-adjusted joint transform correlator. J. Opt. Eng. 33, 1610–1617 (1994)

    Article  Google Scholar 

  24. Sakla, W. Sakla, A., Alam, M.S.: Deterministic hyperspectral target detection using the DWT and spectral fringe-adjusted joint transform correlation (Invited Paper). In: Proceedings of the SPIE Conference on Automatic Target Recognition, vol. 6967, pp. 1–11 (2008)

    Google Scholar 

  25. DeVore, R.A., Jawerth, B., Lucier, B.J.: Image compression through wavelet transform coding. IEEE Trans. Inf. Theory 38, 719–746 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9, 1532–1546 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chang, T., Kuo, C.: Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. Image Process. 2, 429–441 (1993)

    Article  Google Scholar 

  28. Bruce, L.M., Li, J.: Wavelets for computationally efficient hyperspectral derivative analysis. IEEE Trans. Geosci. Remote Sens. 39, 1540–1546 (2001)

    Article  Google Scholar 

  29. Bruce, L.M., Koger, C.H., Li, J.: Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Trans. Geosci. Remote Sens. 40, 2331–2338 (2002)

    Article  Google Scholar 

  30. Kaewpijit, S., Le Moigne, J., El-Ghazawi, T.: Automatic reduction of hyperspectral imagery using wavelet spectral analysis. IEEE Trans. Geosci. Remote Sens. 41, 863–871 (2003)

    Article  Google Scholar 

  31. Bruce, L.M., Morgan, C., Larsen, S.: Automated detection of subpixel hyperspectral targets with continuous and discrete wavelet transforms. IEEE Trans. Geosci. Remote Sens. 39, 2217–2226 (2001)

    Article  Google Scholar 

  32. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  MATH  Google Scholar 

  33. Vetterli, M., Kovacevic, J.: Wavelets and Subband Coding. Prentice Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  34. Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, New York (1999)

    MATH  Google Scholar 

  35. ITRES Research http://www.itres.com, accessed in 2007.

  36. Schowengerdt, R.A.: Remote Sensing, 2nd edn. Academic Press, San Diego (1997)

    Google Scholar 

  37. Chein, I.C., Heinz, D.C.: Constrained subpixel target detection for remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 38(3), 1144–1159 (2000)

    Article  Google Scholar 

  38. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, New Jersey (1989)

    MATH  Google Scholar 

  39. Chang, C.-I.: Hyperspectral Imaging: techniques for Spectral Detection and Classification. Kluwer Academic, New York (2003)

    Book  Google Scholar 

  40. Chang, C.-I.: An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Trans. Inf. Theory 46, 1927–1932 (2000)

    Article  MATH  Google Scholar 

  41. Sakla, A., Sakla, W., Alam, M.S.: Hyperspectral target detection via discrete wavelet-based spectral fringe-adjusted joint transform correlation. Appl. Opt. 50, 5545–5554 (2011)

    Article  Google Scholar 

  42. Parker, D.R., Gustafson, S.G., Ross, T.D.: Receiver operating characteristic and confidence error metrics for assessing the performance of automatic target recognition systems. Opt. Eng. 44, 097202 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Drs. S. Ochilov, E. Sarigul and W. A. Sakla for many rewarding discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad S. Alam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alam, M.S., Sakla, A. (2014). Automatic Target Recognition in Multispectral and Hyperspectral Imagery Via Joint Transform Correlation. In: Asari, V. (eds) Wide Area Surveillance. Augmented Vision and Reality, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8612_2012_5

Download citation

  • DOI: https://doi.org/10.1007/8612_2012_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37840-9

  • Online ISBN: 978-3-642-37841-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics